PCA降维技术】的更多相关文章

PCA降维技术 PCA 降维 Fly Time: 2017-2-28 主成分分析(PCA) PCA Algorithm 实例 主成分分析(PCA) 主成分分析(Principal Component Analysi)是一种掌握可以提取主要特征对的方法,它可以从多元失误中解析出主要影响因素.计算朱成福的目的是将高维数据投影到低维空间.主要是用于降维,提取数据的主要特征分量. 降维,当然以为着信息的丢失,但是鉴于数据本身常常存在相关性,我们可以想办法在降维的同时将信息的随时尽量降低. PCA Alg…
机器学习算法-PCA降维 一.引言 在实际的数据分析问题中我们遇到的问题通常有较高维数的特征,在进行实际的数据分析的时候,我们并不会将所有的特征都用于算法的训练,而是挑选出我们认为可能对目标有影响的特征.比如在泰坦尼克号乘员生存预测的问题中我们会将姓名作为无用信息进行处理,这是我们可以从直观上比较好理解的.但是有些特征之间可能存在强相关关系,比如研究一个地区的发展状况,我们可能会选择该地区的GDP和人均消费水平这两个特征作为一个衡量指标.显然这两者之间是存在较强的相关关系,他们描述的都是该地区的…
数据计算和结果展示一直是数据挖掘领域的难点,一般情况下,数据都拥有超过三维,维数越多,处理上就越吃力.所以,采用降维技术对数据进行简化一直是数据挖掘工作者感兴趣的方向. 对数据进行简化的好处:使得数据集更易于使用,降低算法的计算开销,去除噪声,使得结果易懂. 主成分分析法(PCA)是一种常用的降维技术.在PCA中,数据从原来的坐标系转换到了新的坐标系,新坐标系的选择是由数据本身决定的.第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴的选择和第一个坐标轴正交且具有最大方差的方向. 为…
始终贯彻数据分析的一个大问题就是对数据和结果的展示,我们都知道在低维度下数据处理比较方便,因而数据进行简化成为了一个重要的技术.对数据进行简化的原因: 1.使得数据集更易用使用.2.降低很多算法的计算开销.3.去除噪音.4.使得结果易懂 这里我们关心的数据降维技术为主成分分析(PCA).在PCA中,数据原来的坐标系转换成了新的坐标系,新的坐标系是由数据本身决定的.第一个新的坐标轴的选择是原始数据中方差最大的方向,第二个新的坐标轴的选择和第一个坐标轴正交且具有最大方差方向.这个过程一直重复,重复次…
上一篇文章讲了PCA的数据原理,明白了PCA主要的思想及使用PCA做数据降维的步骤,本文我们详细探讨下另一种数据降维技术—奇异值分解(SVD). 在介绍奇异值分解前,先谈谈这个比较奇怪的名字:奇异值分解,英文全称为Singular Value Decomposition.首先我们要明白,SVD是众多的矩阵分解技术中的一种,矩阵分解方式很多,如三角分解(LU分解.LDU分解.乔列斯基分解等).QR分解及这里所说的奇异值分解:其次,singular是奇特的.突出的.非凡的意思,从分解的过程及意义来看…
参考:<机器学习实战>- Machine Learning in Action 一. 基本思想  PCA(Principal Component Analysis),主成分分析.是目前应用最为广泛的降维技术.  什么是降维?举个例子:假设我们正通过电视观看体育比赛,显示器大概包含了100万像素,而球则可能是由较少的像素组成的,比如一千个像素.大部分体育比赛中,我们关注的是给定时刻球的位置.这个过程,人们就已经将数据从一百万维降低到了三维.  考虑下图的大量数据点,如果要我们画一条直线,这条线要…
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简化数据集的技术.主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征.常常应用在文本处理.人脸识别.图片识别.自然语言处理等领域.可以做在数据预处理阶段非常重要的一环,本文首先对基本概念进行介绍,然后给出PCA算法思想.流程.优缺点等等.最后通过一个综合案例去实现应用.(本文原…
参考资料:Mastering Machine Learning With scikit-learn 降维致力于解决三类问题.第一,降维可以缓解维度灾难问题.第二,降维可以在压缩数据的同时让信息损失最 小化.第三,理解几百个维度的数据结构很困难,两三个维度的数据通过可视化更容易理解 PCA简介 主成分分析也称为卡尔胡宁-勒夫变换(Karhunen-Loeve Transform),是一种用于探索高维数据结 构的技术.PCA通常用于高维数据集的探索与可视化.还可以用于数据压缩,数据预处理等.PCA可…
一.LDA算法 基本思想:LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的.这点和PCA不同.PCA是不考虑样本类别输出的无监督降维技术. 我们要将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大. 浅显来讲,LDA方法的考虑是,对于一个多类别的分类问题,想要把它们映射到一个低维空间,如一维空间从而达到降维的目的,我们希望映射之后的数据间,两个类别之间“离得越远”,且类别内的数据点之间“离得越近”,这样…
http://blog.json.tw/using-matlab-implementing-pca-dimension-reduction 設有m筆資料, 每筆資料皆為n維, 如此可將他們視為一個mxn matrix.若資料的維度太大時, 可能不利於分析, 例如這m筆資料用作機器學習. PCA的想法是算出這mxn matrix的斜方差矩陣, 此矩陣大小為nxn, 計算此矩陣n個特徵值(eigen value)及其對應的特徵向量(eigen vector), 依eigen value大小由小到大排…