BZOJ 2969 期望】的更多相关文章

思路: 我们可以分开算每个格子自己的期望啊... 期望可以累加的 那就把这个大格子 分成 9个部分 分别算好了... //By SiriusRen #include <cmath> #include <cstdio> using namespace std; #define int long long #define double long double int w,h,k; double ans; signed main(){ scanf("%lld%lld%lld&q…
BZOJ 2969: 矩形粉刷(期望) 题意: 给你一个\(w*h\)的方阵,不断在上面刷格子.每次等概率选择方阵中的两个点(可以相同)将以这两个点为端点的矩形(边平行于矩形边界)进行染色.共染\(k\)次,问最后被染色的格子的期望值. 题解:(参考了liu_runda大佬的博客) 这真是一道好题~ 思维比较巧妙~ 因为我们无法直接考虑每个点\(k\)次后被染色的期望(想一想,为什么) 正难则反,我们可以考虑\(k\)次后没被染色的期望,所以原来被染色的期望就可以转化为\(1-\)没有被染色的期…
题目: 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩形全部刷好.小M乐坏了,于是开始胡乱地使用这个工具. 假设小M每次选的两个格子都是完全随机的(方阵中每个格子被选中的概率是相等的),而且小M使用了K次工具,求木板上被小M粉刷过的格子个数的期望值是多少. 题解: 我们发现我们无法直接进行概率期望dp 因为状态无法记录. 而在这道题中被染色的格子的位置不…
还是老套路:期望图上的格子数=$\sum$ 每个格子被涂上的期望=$\sum$1-格子不被图上的概率 这样的话就相对好算了. 那么,对于 $(i,j)$ 来说,讨论一下上,下,左,右即可. 然后发现四个角的面积会被重复统计,所以再减去 $4$ 个角的贡献即可. #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) using namespace std; double sq…
BZOJ 3270 :设置状态为Id(x,y)表示一人在x,一人在y这个状态的概率. 所以总共有n^2种状态. p[i]表示留在该点的概率,Out[i]=(1-p[i])/Degree[i]表示离开该点的概率. 那么对于每一种状态a,b 则有P(a,b)=p[a]∗p[b]∗P(a,b)+Out[u]∗p[b]∗P(u,b)+p[a]∗Out[v]∗P(a,v)+Out[u]∗Out[v]∗P(u,v) 则有n^2个方程 对于起始状态a,b,则有P(a,b)=p[a]∗p[b]∗P(a,b)+O…
自己只能想到O(n^2)的: dp[i][j] 表示 以i结尾,长度为j的o串的概率,然后在每次遇到x的时候算分数. 正解是: dp[i]表示前i个的答案,d[i]表示以i结尾的期望长度. 推的时候它用d[i]*d[i]-d[i-1]*d[i-1]来算新增的贡献,有点不明白为什么可以这样(平方的期望应该不等于期望的平方才对吧). 哪天问问jason_yu. 这道题,假如我们已经确定了问号的内容,那么我们怎么求该种情况的分数的? 它等于:ans = sigma d[i]*d[i]-d[i-1]*d…
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAdkAAAIfCAIAAACzfDFhAAAgAElEQVR4nOy9bVwTW57vm5fnhed+Pn…
思路:这个题看着感觉不能dp,其实是可以dp的,因为狼每次走两步,兔子每次走一步,每进行一轮以后,狼和兔子的距离 肯定是在接近的,没有相同的状态,dp之前预处理出来,每一步狼该往哪里走. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define pii pair<int, int> using namespace std;…
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和. 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小.…
Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的.作为一个非 洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值.但他已 经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一 下当欧洲人是怎样的体验.  本题中我们将考虑游戏的一个简化版模型.  玩家有一套卡牌,…
啊 我永远喜欢期望题 BZOJ 3143 游走 题意 有一个n个点m条边的无向联通图,每条边按1~m编号,从1号点出发,每次随机选择与当前点相连的一条边,走到这条边的另一个端点,一旦走到n号节点就停下.每经过一条边,要付出这条边的编号这么多的代价.现将所有边用1~m重新编号,使总代价的期望最小,求这个最小值. 题解 我们可以求出每条边的期望经过次数,然后贪心地让经过次数多的边编号小即可. 直接用边来列方程求经过次数似乎列不出来,我们借助点来列方程. 设x[u]为从某个点出发的次数的期望,v为与u…
Bzoj 3450: Tyvj1952 Easy 这里放上题面,毕竟是个权限题(洛谷貌似有题,忘记叫什么了) Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1031 Solved: 772 Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连续a个comb就有aa分,comb就是极大的连续o. 比如o…
Bzoj 2752 高速公路 (期望,线段树) 题目链接 这道题显然求边,因为题目是一条链,所以直接采用把边编上号.看成序列即可 \(1\)与\(2\)号点的边连得是. 编号为\(1\)的点.查询的时候把\(r - 1\)就好了. 这里的期望显然就是路径的平均值. 期望值: \[\dfrac{\sum_{i=l}^r\sum_{j=l}^{r}dis[i][j]}{C_{r-l+1}^2}\] 下面部分可以直接算出: 上面这一部分比较难维护. 考虑每一条边会被走过多少次. \[ans = \su…
刚发现Bzoj有Noip的题目,只会换教室这道题..... Bzoj 题面:Bzoj 4720 Luogu题目:P1850 换教室 大概是期望DPNoip极其友好的一道题目,DP不怎么会的我想到了,大概是自己比较有成就感的题目(我才不会告诉你们,我这个题因为const int 挂了) 期望的线性性质:和的期望 = 期望的和. 期望\(E(x) = \sum_iP_i*W_i\) 那么这个题的期望就是\(L * P_i\)长度乘以概率. 知道期望的性质及期望,下面就是动态规划的部分. 设置状态:\…
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋值,所以问题就是如何求每条边的期望. 直接求没办法求的,可以先求出每个点经过的期望. 易得f[i]=∑f[j]/d[j] j->i有边 特殊的,对于起点,因为刚开始就在,所以应该是f[1]=1+∑f[j]/d[j]:对于终点,到了终点后不能再到其他节点,所以对其他边并没有贡献,所以f[n]=0 然后…
如果纯模拟,就会死循环,而随着循环每个点的期望会逼近一个值,高斯消元就通过列方正组求出这个值. #include<cstdio> #include<cctype> #include<cstring> #include<algorithm> using namespace std; const double eps=1e-9; bool vis[503]; double f[503],a[503][503],ans[500*500]; int N,M,cnt=…
http://www.lydsy.com/JudgeOnline/problem.php?id=1076 有时候人蠢还真是蠢.一开始我看不懂期望啊..白书上其实讲得很详细的,什么全概率,全期望(这个压根没说). 还是看了论文才知道全期望这个东西.. 意思很明白,就是说Y的期望等于 所有 可能的情况的期望值乘上得到这个期望值的概率 的和. 很难懂吗...慢慢想. 首先你得知道期望是 之中某个事件的概率×这个事件的贡献 之和. 而且这些事件相互独立. 那么这里求全期望也就是 “这个事件的贡献” 那里…
4318: OSU! 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4318 Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串.在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释) 现在给出n,以及每个操作…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3143 [题意] 给定一个无向图,从1走到n,走过一条边得到的分数为边的标号,问一个边的标号方法,使得路径上得分最少. [思路] 设f[i]表示经过i点的期望次数.有: f[1]=1+sigma{ f[v] } f[u]=sigma{ f[v] } 特别地,令f[n]=0,因为n点不会对任何连边做出贡献,于是记之为0. 于是得到了n个线性方程组,可以用高斯消元法求解. 对于一条边(u,…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2134 [题意] ai与ai+1相等得1分,求期望. [思路] 每个题的期望都是独立的. 考虑a[i],若a[i]>a[i+1],则有(a[i+1]/a[i])的概率选到1..a[i]并有(1/a[i])的概率选对,同理a[i]<a[i+1].则期望得分为1/max{ a[i],a[i+1] }. [代码] #include<cstdio> #include<ios…
[题意] R红B蓝,选红得1选蓝失1,问最优状态下的期望得分. [思路] 设f[i][j]为i个Rj个B时的最优期望得分,则有转移式为: f[i][j]=max{ 0,(f[i-1][j]+1)*(i/(i+j))+(f[i][j-1]-1)*(j/(i+j)) } 有i/(i+j)的可能性得1分,有j/(i+j)的可能性失1分,再加上原来的分数,则期望得分为上式. 需要用下滚动数组.直接按位数输出采用的四舍五入的方法,所以还需要减去5e-7. [代码] #include<cstdio> #i…
3450: Tyvj1952 Easy Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 431  Solved: 325[Submit][Status][Discuss] Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连续a个comb就有a*a分,comb就是极大的连续o.比如ooxxxxooooxxx…
第i个填到第i+1个的期望得分显然是1/max(a[i],a[i+1]).根据期望的线性性, 我们只需将每个选项的期望值累加即可. --------------------------------------------------------------------------- #include<bits/stdc++.h>   using namespace std;   typedef long long ll;   const int maxn = 10000009;   int a…
从终点往起点倒推 . 在一个图 考虑点 u , 出度为 s : s = 0 , d[ u ] = 0 ; s ≠ 0 , 则 d( u ) = ( ∑ d( v ) ) / s ( ( u , v ) ∈ E ) ---------------------------------------------------------------------------- #include<cstdio> #include<cstdlib> #include<cstring>…
4872: [Shoi2017]分手是祝愿 题意:n个灯开关游戏,按i后i的约数都改变状态.随机选择一个灯,如果当前最优策略\(\le k\)直接用最优策略.问期望步数\(\cdot n! \mod 1003\) 50% n=k 送分...从大到小选就行了...实际上送了80分... 这个期望DP没想到不应该啊 \(f[i]\)表示还有i步可以结束的期望步数 \[ f[i] = \frac{i}{n} f[i-1] + \frac{n-i}{n}f[i+1] +1 \\ f[i+1] = ...…
3451: Tyvj1953 Normal 题意: N 个点的树,点分治时等概率地随机选点,代价为当前连通块的顶点数量,求代价的期望值 百年难遇的点分治一遍AC!!! 今天又去翻了一下<具体数学>上的离散概率,对期望有了一点新认识吧. 本题根据期望的线性性质,计算每个点的代价期望加起来. 一个点v产生了代价,它在u选为中心时所在的cc里,并且(u,v)路径上没有其他点已经被选择.概率为\(\frac{1}{(u,v)之间包含u,v点的个数}\) 统计每种长度的路径有多少个 点分治+生成函数统计…
传送门 题意: 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢邮票,所以皮皮购买第k张邮票需要支付k元钱. 现在皮皮手中没有邮票,皮皮想知道自己得到所有种类的邮票需要花费的钱数目的期望. 想了好几天了 一开始想求期望次数再套上等差数列,然后一直$WA$ 其实应该再求长度平方的期望,就因为变量平方的期望想了好几天 非常感谢SD_le大爷的帮助 先说怎么求期望次数…
传送门 题意:$n$种宝物,出现$k$次每次一种,每种宝物有价值和吃掉它之前必须要吃掉的宝物的集合,求采取最优策略的期望最大价值 1<=k<=100,1<=n<=15,分值为[-10^6,10^6]内的整数. 看到$n$应该想到状压.... $f[i][s]$表示前$i$次已经吃掉的集合为$s$的期望最大值 然而正推的话,答案是谁呢? 所以倒推,表示这个状态到结束得到的期望最大值 转移枚举出现的宝物,最后乘上概率$\frac{1}{n}$ #include <iostream…
3091: 城市旅行 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1454  Solved: 483[Submit][Status][Discuss] Description Input Output Sample Input 4 5 1 3 2 5 1 2 1 3 2 4 4 2 4 1 2 4 2 3 4 3 1 4 1 4 1 4 Sample Output 16/3 6/1 HINT 对于所有数据满足 1<=N<=50,000 1&l…
2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1219  Solved: 446[Submit][Status][Discuss] Description Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站.Y901高速公路是一条由N-1段路以及N个收费站组成的东西向的链,我们按照由西向东的顺序将收费站依次编号为1…