如果有一定的数据分析与机器学习理论与实践基础,<Python数据科学手册>这本书是绝佳选择. 是对以数据深度需求为中心的科学.研究以及针对计算和统计方法的参考书.很友好实用,结构很清晰.但不适合数据分析的入门的学习人员,尤其matplotlib与机器学习部分,虽点到为止切到要害,但没有一定的基础,很难通顺的走完每个章节,每个小节.而且不是查查文档,看看资料就能解决的. 中文版PDF,474页,带目录和书签,文字能够复制粘贴:附源代码. 英文版PDF,548页,带目录和书签,文字能够复制粘贴.…
一.引入 import matplotlib as mpl import matplotlib.pyplot as plt 二.配置 1.画图接口 Matplotlib 有两种画图接口: (1)一个是便捷的 MATLAB 风格接口 (2)功能更强大的面向对象接口[推荐,下文都以这个为例] 在面向对象接口中,画图函数不再受到当前"活动"图形或坐标轴的限制,而变成了显式的 Figure 和 Axes 的方法(一个Figure画布下可以有多个Axes子图). 2.静态 or 交互 %matp…
Python数据科学手册(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1KurSdjNWiwMac3o3iLrzBg 提取码:qogy 复制这段内容后打开百度网盘手机App,操作更方便哦 内容简介  · · · · · · 本书是对以数据深度需求为中心的科学.研究以及针对计算和统计方法的参考书.本书共五章,每章介绍一到两个Python数据科学中的重点工具包.首先从IPython和Jupyter开始,它们提供了数据科学家需要的计算环境:第2章讲解能提供ndarr…
目录 <Python数据科学手册>第五章机器学习的笔记 0. 写在前面 1. 判定系数 2. 朴素贝叶斯 3. 自举重采样方法 4. 白化 5. 机器学习章节总结 <Python数据科学手册>第五章机器学习的笔记 0. 写在前面 参考书 <Python数据科学手册>第五章"机器学习" 工具 Jupyter Lab 作用 给书中没有的知识点做补充. 1. 判定系数 定义 判定系数(coefficient of determination),也叫可决系数…
<Python数据科学手册>[美]Jake VanderPlas著 陶俊杰译 Absorb what is useful, discard what is not, and  add what is uniquel what own.(取其精华,去其糟粕,再加点自己的独创.) 本书在GitHub上开源:https://github.com/jakevdp/PythonDataScienceHandbook 作者在博客发布Notebook的HTML版本:https://jakevdp.githu…
Python数据科学手册Seaborn马拉松可视化里时分秒转化为秒数的问题 问题描述: 我实在是太懒了,问题描述抄的网上的哈哈哈:https://www.jianshu.com/p/6ab7afa059d1 在做Python Data Science Handbook的实例学习,4.16.3 案例:探索马拉松比赛成绩里,有提示将时分秒的时间化为秒的总数,以方便画图.书里给出的指令是: data['split_sec']=data['split'].astype(int)/1E9 data['fi…
<Python数据科学手册>共五章,每章介绍一到两个Python数据科学中的重点工具包.首先从IPython和Jupyter开始,它们提供了数据科学家需要的计算环境:第2章讲解能提供ndarray对象的NumPy,它可以用Python高效地存储和操作大型数组:第3章主要涉及提供DataFrame对象的Pandas,它可以用Python高效地存储和操作带标签的/列式数据:第4章的主角是Matplotlib,它为Python提供了许多数据可视化功能:第5章以Scikit-Learn为主,这个程序库…
读Python数据科学手册 笔记 系列 数据科学 data science https://img2022.cnblogs.com/blog/2827305/202205/2827305-20220510220613578-1699080622.png 黑客技术 机器学习 行业经验 数学和统计学知识 跨学科, 统计学家的能力: 能够建立模型和聚合 计算机科学家的能力: 能够设计并使用算法对数据进行高效存储.分析和可视化 领域专家的能力:在细分领域中经过专业训练 Why Python 生态系统:…
所属网站分类: 资源下载 > python电子书 作者:today 链接:http://www.pythonheidong.com/blog/article/448/ 来源:python黑洞网 内容简介 本书是对以数据深度需求为中心的科学.研究以及针对计算和统计方法的参考书.本书共五章,每章介绍一到两个Python数据科学中的重点工具包.首先从IPython和Jupyter开始,它们提供了数据科学家需要的计算环境:第2章讲解能提供ndarray对象的NumPy,它可以用Python高效地存储和操…
模型验证 model validation 就是在选择 模型 和 超参数 之后.通过对训练数据进行学习.对比模型对 已知 数据的预测值和实际值 的差异. 错误的模型验证方法. 用同一套数据训练 和 评估 模型. 准确率总是100% . 模型验证正确方法: 留出集. 从训练模型的数据中留出一部分.用这部分数据来验证模型的性能. 使用train_test_split 工具. 交叉检验 用留出集进行模型验证有一个缺点,就是模型失去了一部分训练机会.有一半数据都没有为模型训练做出贡献. 每个子集既是训练…
通过Python有效导入.存储和操作内存数据的技巧 数据来源:文档.图像.声音.数值等等,将所有的数据简单的看做数字数组 非常有助于 理解和处理数据 不管数据是何种形式,第一步都是 将这些数据转换成 数值形式 的可分析数据. Numpy Numerical Python 的简称, Numpy 数组和python内置的列表类型 非常相似,随着数组在维度上的变大,Numpy数组更高效 导入numpy import numpy as np 理解Python中的数据类型 python易用之处在于动态输入…
PCA对非线性的数据集处理效果不太好. 另一种方法 流形学习 manifold learning 是一种无监督评估器,试图将一个低维度流形嵌入到一个高纬度 空间来描述数据集 . 类似 一张纸 (二维) 卷起 弄皱 (三维).二维流形 嵌入到一个三维空间, 就不再是线性的了. 流形方法技巧: 多维标度法 multidimensional scaling MSD 局部线性嵌入法 locally linear embedding LLE 保距映射法 isometric mapping Isomap 流…
NumPy(Numerical Python 的简称)提供了高效存储和操作密集数据缓存的接口.在某些方面,NumPy 数组与 Python 内置的列表类型非常相似.但是随着数组在维度上变大,NumPy 数组提供了更加高效的存储和数据操作. 版本检查:(遵循传统,使用np作为别名导入NumPy) 2.1 理解Python中的数据类型 2.1.1 Python整形不仅仅是一个整形 Python 3.x 中的一个整型实际上包括 4 个部分. ob_refcnt 是一个引用计数,它帮助 Python 默…
PCA principal component analysis 主成分分析是一个快速灵活的数据降维无监督方法, 可视化一个包含200个数据点的二维数据集 x 和 y有线性关系,无监督学习希望探索x值和y值之间的相关性 在主成分分析中.一种量化俩变量之间关系的方法 是在数据中找到一组主轴,并用这些主轴来描述 数据集. 利用PCA评估器 该拟合从数据中心学习到了一些指标,其中最重要的是 "成分" 和 "可解释差异" 在数据图上将这些指标以向量形式画出来. 成分 定义向…
support vector machine SVM 是非常强大. 灵活的有监督学习算法, 可以用于分类和回归. 贝叶斯分类器,对每个类进行了随机分布的假设,用生成的模型估计 新数据点 的标签.是属于 生成分类 方法. 判别分类:不再为每类数据建模,而是用一条分割线 或者 流形体 将各种类型分开. 原始数据: 线性判别分类器 尝试 化一条 将数据 分成 俩部分的直线,这样就构成了一个分类模型. 可以发现不止一条直线可以将它们完美分割. 不同的分割线,会让新数据分配到不同的标签. 支持向量机:边界…
机器学习分为俩类: 有监督学习 supervised learning 和 无监督学习 unsupervised learning 有监督学习: 对数据的若干特征与若干标签之间 的关联性 进行建模的过程. 只要模型被确定,就可以应用到新的未知的数据上. 进一步可以分为 分类 classification 任务 和 回归 regression 任务. 分类任务: 标签是离散值. 回归任务: 标签是连续值. 无监督学习: 指对不带任何标签的数据特征进行建模. 让数据自己介绍自己. 包括 聚类 clu…
Numpy数组取值 切片[:,1:5], 掩码操作arr[arr>0], 花哨的索引 arr[0, [1,5]],Pandas的操作类似 Series数据选择方法 Series对象与一维Numpy数组 和标准的Python字典 在许多方面 都一样. 1)将Series看作字典 可以使用Python字典的表达式和方法来检查 键 和索引 值 Series 可以新增,可以扩展. 2)将Series看作一维数组 Series不仅有着和字典一样的接口,而且还具备和Numpy数组一样的数组 数据选择 包括…
1.1 shell还是Notebook Jupyter Notebook 是 IPython shell 基于浏览器的图形界面,提供了一系列丰富的动态展示功能.Jupyter Notebook 不仅可以执行 Python/IPython 语句,还允许用户添加格式化文本.静态和动态的可视化图像.数学公式.JavaScript 插件,等等.不仅如此,这些 Notebook 文档还能以共享方式存储,以便其他人可以打开这些 Notebook,并且在他们自己的系统中执行这些 Notebook 代码. >…
前面学习的无监督学习模型:降维 另一种无监督学习模型:聚类算法. 聚类算法直接冲数据的内在性质中学习最优的划分结果或者确定离散标签类型. 最简单最容易理解的聚类算法可能是 k-means聚类算法了. k-means简介 在不带标签的多维数据集中 寻找确定数量 的簇. 最优的聚类结果需要符合以下俩个假设: 簇中心点 cluster center 是属于该簇的所有数据点坐标的算术平均值 一个簇的每个点到该簇中心点的距离 比 到其他簇中心点的距离 短. 原始数据,包含4个明显的簇 评估器拟合数据: 高…
无参数 算法 随机森林 随机森林是一种集成方法,集成多个比较简单的评估器形成累计效果. 导入标准程序库 随机森林的诱因: 决策树 随机森林是建立在决策树 基础上 的集成学习器 建一颗决策树 二叉决策树 在一颗合理的决策书中.每个问题基本上都可将种类的可能性减半. 决策树的难点在于如何设计每一步的问题. 创建一颗决策树 原始数据: 四种标签 使用DecisionTreeClassifier评估器 辅助函数,分类器结果可视化 检查决策树分类的结果 在深度为5的时候,在黄色与蓝色区域中间有一个浅紫色区…
特征工程常见示例: 分类数据.文本.图像. 还有提高模型复杂度的 衍生特征 和 处理 缺失数据的填充 方法.这个过程被叫做向量化.把任意格式的数据 转换成具有良好特性的向量形式. 分类特征 比如房屋数据: 房价.面积.地点信息. 方案1:把分类特征用映射关系 编码成 整数 . {'Queen Anne': 1, 'Fremont': 2, 'Wallingford': 3}; 在scikit-learn中并不好,数值特征可以反映代数量.会产生 1<2<3的 方案2:使用独热编码 有效增加额外的…
向量化字符串操作 Series 和 Index对象 的str属性. 可以正确的处理缺失值 方法列表 正则表达式. Method Description match() Call re.match() on each element, returning a boolean. extract() Call re.match() on each element, returning matched groups as strings. findall() Call re.findall() on e…
简单累计功能 Series sum() 返回一个 统计值 DataFrame sum.默认对每列进行统计 设置axis参数,对每一行 进行统计 describe()可以计算每一列的若干常用统计值. 获取seaborn planets数据 github: https://github.com/mwaskom/seaborn-data.git windows: 放在用户目录下(在线下载卡.超时.) dropna()丢弃有缺失值的行. Pandas累计方法 Aggregation Descriptio…
一维数据 和 二维数据 分别使用Series 和 DataFrame 对象存储. 多维数据:数据索引 超过一俩个 键. Pandas提供了Panel 和 Panel4D对象 解决三维数据和四维数据. 实践中,更直观的形式是通过 层级索引(Hierarchical indexing, 多级索引 = > muti-indexing) 配合 多个不同 等级的一级索引 一起使用. 本节介绍 MultiIndex对象的使用,以及 普通索引 与 层级索引的转换 多级索引Series 笨方法 好方法: Mul…
Numpy 的基本能力之一是快速对每个元素进行运算 Pandas 继承了Numpy的功能,也实现了一些高效技巧. 对于1元运算,(函数,三角函数)保留索引和列标签 对于2元运算,(加法,乘法),Pandas 会自动对齐索引进行计算. 通用函数:保留索引 对ser对象或 df对象使用Numpy通用函数,生成的结果是另一个保留索引的Pandas对象. 通用函数: 索引对齐 当Series 或 DataFram对象进行二元计算,会对齐俩个对象的索引 当处理不完整的额数据时,这一点非常方便 Series…
Pandas是在Numpy基础上建立的新程序库,提供了一种高效的DataFrame数据结构 本质是带行标签 和 列标签.支持相同类型数据和缺失值的 多维数组 增强版的Numpy结构化数组 行和列不在只是简单的整数索引,还可以带上标签, 三个基本数据结构 Series DataFrame Index Series Series将一组数据和一组索引绑定在一起 可以通过values 和 index属性获取数据, 与Numpy数据的区别:Numpy数组通过隐式定义的整数索引获取数值,Pandas 的Se…
Numpy的通用函数可以用来替代循环, 快速实现数组的逐元素的 运算 同样,使用其他通用函数实现数组的逐元素的 比较 < > 这些运算结果 是一个布尔数据类型的数组. 有6种标准的比较操作 小于,大于,小于等于,大于等于, 不等于, 等于 x > 3 x <= 3 x >= 3 x != 3 x == 3 复合表达式 对应的通用函数 Operator Equivalent ufunc Operator Equivalent ufunc == np.equal != np.no…
为防止遗忘,在空闲时间将读书的笔记开始按照章节进行概括总结(2022.1.1): 第二章:NumPy 入门 第三章:Pandas 数据处理 第四章:Matplotlib 数据可视化 第五章:机器学习 书目:…
朴素贝叶斯是解决分类任务的好起点,线性回归是解决回归任务的好起点. 简单线性回归 将数据拟合成一条直线. y = ax + b , a 是斜率, b是直线截距 原始数据如下: 使用LinearRegression评估器来拟合数据 除了简单的直线拟合,还可以处理多维度的线性回归模型. 基函数回归 使用基函数 对原始数据进行变换,从而将变量间的线性回归模型 转换为非线性回归模型. 一维的输入变量x 转换成了 三维变量 x1 x2 x3. 转换后的模型仍然是一个线性模型.将一维的x投影到了高维空间 多…
朴素贝叶斯模型 朴素贝叶斯模型是一组非常简单快速的分类方法,通常适用于维度非常高的数据集.因为运行速度快,可调参数少.是一个快速粗糙的分类基本方案. naive Bayes classifiers 贝叶斯分类 朴素贝叶斯分类器建立在贝叶斯分类方法的基础上.数学基础是贝叶斯定理. 一个描述统计量条件概率关系的公式. 在贝叶斯分类中,我们希望确定一个具有某些特征的样本 属于 某类标签的概率. 通常记为 P(L|特征) 需要确定俩种标签,定义为L1和L2. 计算俩个标签的后验概率的比值 现在需要一种模…