注:本文是人工智能研究网的学习笔记 常用的数据预处理方式 Standardization, or mean removal and variance scaling Normalization: scaling individual to have unit norm Binarization: thresholding numerical features to get boolean values Encoding categorical feature Imputation of miss…
RESCALING attribute data to values to scale the range in [0, 1] or [−1, 1] is useful for the optimization algorithms, such as gradient descent, that are used within machine learning algorithms that weight inputs (e.g. regression and neural networks).…
#We will also standardise our data as we have done so far when performing distance-based clustering. from pyspark.mllib.feature import StandardScaler standardizer = StandardScaler(True, True) t0 = time() standardizer_model = standardizer.fit(parsed_d…