掌握部分硬件知识,有助于程序员编写更好的CUDA程序,提升CUDA程序性能,本文目的是理清sp,sm,thread,block,grid,warp之间的关系.由于作者能力有限,难免有疏漏,恳请读者批评指正.  首先我们要明确:SP(streaming Process),SM(streaming multiprocessor)是硬件(GPU hardware)概念.而thread,block,grid,warp是软件上的(CUDA)概念. 从硬件看 SP:最基本的处理单元,streaming pr…
"CUDA runtime is insufficient with CUDA driver"CUDA 9.2: 396.xx CUDA 9.1: 387.xx CUDA 9.0: 384.xx CUDA 8.0 375.xx (GA2) CUDA 8.0: 367.4x CUDA 7.5: 352.xx CUDA 7.0: 346.xx CUDA 6.5: 340.xx CUDA 6.0: 331.xx CUDA 5.5: 319.xx CUDA 5.0: 304.xx CUDA 4…
Warp 逻辑上,所有thread是并行的,但是,从硬件的角度来说,实际上并不是所有的thread能够在同一时刻执行,接下来我们将解释有关warp的一些本质. Warps and Thread Blocks warp是SM的基本执行单元.一个warp包含32个并行thread,这32个thread执行于SMIT模式.也就是说所有thread执行同一条指令,并且每个thread会使用各自的data执行该指令. block可以是一维二维或者三维的,但是,从硬件角度看,所有的thread都被组织成一维…
多谢大家关注 转载本文请注明:http://blog.csdn.net/leonwei/article/details/8880012 本文将作为我<从零开始做OpenCL开发>系列文章的第一篇. 1 异构计算.GPGPU与OpenCL OpenCL是当前一个通用的由很多公司和组织共同发起的多CPU\GPU\其他芯片 异构计算(heterogeneous)的标准,它是跨平台的.旨在充分利用GPU强大的并行计算能力以及与CPU的协同工作,更高效的利用硬件高效的完成大规模的(尤其是并行度高的)计算…
<CUDA并行程序设计:GPU编程指南> 基本信息 原书名:CUDA Programming:A Developer’s Guide to Parallel Computing with GPUs 作者: (美)Shane Cook 译者: 苏统华 李东 李松泽 魏通 丛书名: 高性能计算系列丛书 出版社:机械工业出版社 ISBN:9787111448617 上架时间:2014-1-10 出版日期:2014 年1月 开本:16开 页码:1 版次:1-1 所属分类:计算机 更多关于>>…
2017年5月25日 0. 概述 FFmpeg可通过Nvidia的GPU进行加速,其中高层接口是通过Video Codec SDK来实现GPU资源的调用.Video Codec SDK包含完整的的高性能工具.源码及文档,支持,可以运行在Windows和Linux系统之上.从软件上来说,SDK包含两类硬件加速接口,用于编码加速的NVENCODE API和用于解码加速的NVDECODE API(之前被称为NVCUVID API).从硬件上来说,Nvidia GPU有一到多个编解码器(解码器又称硬件加…
在西雅图超级计算大会(SC11)上发布了新的基于指令的加速器并行编程标准,既OpenACC.这个开发标准的目的是让更多的编程人员可以用到GPU计算,同时计算结果可以跨加速器使用,甚至能用在多核CPU上.出于显而易见的原因,NVIDIA在大力推广和支持OpenACC.但事实上PGI和Cray才是最早推动这项技术商业化的公司.PGI已经推出了一组非常类似的加速器指令,目前也成为了OpenACC标准的基础部分之一.Cray公司正在开发自己的OpenACC编译器,并且他的XK6客户如橡树岭国家实验室和瑞…
概述 NVIDIA Jetson TX1是计算机视觉系统的SoM(system-on-module)解决方案.它组合了最新的NVIDIAMaxwell GPU架构,其具有ARM Cortex-A57 MPCore(Quad-Core)CPU族,实现性能与电源功耗的最大优化,满足下一代产品的工业视觉计算的要求. Jetson TX1 SoM设计满足低功耗环境要求,集成: l  先进的3D图形.视频和图像处理 l  并行计算.机器视觉.机器学习能力 l  32bit和64bit的操作能力 除了性能和…
硬件加速 并行计算 OpenCL OpenCL API VS SDK 英伟达硬件编解码方案 基于 OpenCL 的 API 自己写一个编解码器 使用 SDK 中的编解码接口 使用编码器对于 OpenCL 和 SDK 的封装 硬件加速 硬件加速的学术名称是 GPGPU(General-purpose computing on graphicsprocessing units),中文名称是通用图形处理器.最基本的思想是使用 GPU 的运算能力完成原本需要 CPU 来进行的运算. 并行计算 GPU 是…
GPU的硬件结构,也不是具体的硬件结构,就是与CUDA相关的几个概念:thread,block,grid,warp,sp,sm. sp: 最基本的处理单元,streaming processor  最后具体的指令和任务都是在sp上处理的.GPU进行并行计算,也就是很多个sp同时做处理 sm:多个sp加上其他的一些资源组成一个sm,  streaming multiprocessor. 其他资源也就是存储资源,共享内存,寄储器等. warp:GPU执行程序时的调度单位,目前cuda的warp的大小…