1250 Fibonacci数列(矩阵乘法)】的更多相关文章

1250 Fibonacci数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30000. 输入描述 Input Description 第一行一个数T(1<=T<=10000). 以下T行,每行两个数,n,q(n<=109, 1<=q<=…
嗯,,,矩阵乘法最基础的题了. Program CODEVS1250; ..,..] of longint; var T,n,mo:longint; a,b:arr; operator *(a,b:arr) c:arr; var i,j,k,sum:longint; begin fillchar(c,sizeof(c),); do do begin sum:=; do sum:=(sum+a[i,k]*b[k,j]) mod mo; c[i,j]:=sum; end; exit(c); end;…
codevs 1250 Fibonacci数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond   题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30000. 输入描述 Input Description 第一行一个数T(1<=T<=10000). 以下T行,每行两个数,n,q(n<=109, …
1250 Fibonacci数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30000. 输入描述 Input Description 第一行一个数T(1<=T<=10000). 以下T行,每行两个数,n,q(n<=109, 1&l…
1250 Fibonacci数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30000. 输入描述 Input Description 第一行一个数T(1<=T<=10000). 以下T行,每行两个数,n,q(n<…
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩阵\(B\)得到\(k\times k\)的矩阵,其中第\(i\)列第\(j\)行的数就是\(A\)的第\(i\)行所有数与\(B\)的第\(j​\)列分别相乘再相加 考虑使用矩阵乘法优化DP,为了最后得到\(f(n)​\),我们设矩阵\(\text{base}​\),使\(\begin{bmatr…
http://wikioi.com/problem/1250/ 我就不说这题有多水了. 0 1 1 1 矩阵快速幂 #include <cstdio> #include <cstring> #include <cmath> #include <string> #include <iostream> #include <algorithm> using namespace std; #define rep(i, n) for(int i…
题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30000. 输入描述 Input Description 第一行一个数T(1<=T<=10000). 以下T行,每行两个数,n,q(n<=109, 1<=q<=30000) 输出描述 Output Description 文件包含T行,每行对应一个答案. 样例输入 Sample I…
题面 给定\(n,m\),求: \[ T(n)=\sum_{i=1}^ni\times f_i \] 其中\(f_i\)为斐波那契数列的第\(i\)项 题解 不妨设: \[ S(n)=\sum_{i=1}^nf_i \] 则可以设: \[ P(n)=nS(n)-T(n)=\sum_{i=1}^{n-1}(n-i)\times f_i \] 所以有: \[ P(n+1)=\sum_{i=1}^{n}(n+1-i)\times f_i=\sum_{i=1}^n(n-i)\times f_i+\sum…
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatrix} p&q\\ 1&0\\ \end{bmatrix}^{n-2}=\begin{bmatrix}f_n\\f_{n-1} \end{bmatrix}\] 水题 代码 #include <bits/stdc++.h> #define int long long using na…