[GPU] Install H2O.ai】的更多相关文章

一.前言 主页:https://www.h2o.ai/products/h2o4gpu/ GPU版本安装:h2oai/h2o4gpu 采用GPU,能否成为超越下面链接中实验的存在? [ML] LIBSVM Data: Classification, Regression, and Multi-label Solver Classes Among others, the solver can be used for the following classes of problems GLM: La…
1.官网下载最新稳定版,https://www.h2o.ai/download/ ,如果点击下载无反应,请使用ie浏览器 2.解压h2o-3.18.0.10.zip到目录h2o-3.18.0.10 3.执行命令 cd h2o-3.18.0.10 java -jar h2o.jar -name clusterName 选项参考http://docs.h2o.ai/h2o/latest-stable/h2o-docs/starting-h2o.html#h2o-options [root@eurek…
一.MPI为何物? 初步了解:MPI集群环境搭建 二.重新认识Spark 链接:https://www.zhihu.com/question/48743915/answer/115738668 马铁大神的phd thesis 总结里面说了一句话 大概意思是说 单纯的如果使用mpi 来实现一个算法 比spark 快五六倍是很正常的 但是spark 是一个 general 的 data flow 处理框架 就是可以在数据的生命周期里面 可以使用spark 之上的具体实现来处理数据 ml 只是一部分而…
H2O Driverless AI(H2O无驱动人工智能平台)是一个自动化的机器学习平台,它给你一个有着丰富经验的“数据科学家之盒”来完成你的算法. 使AI技术得到大规模应用 各地的企业都意识到人工智能应用程序是推动更好的客户体验和增加利润的关键.在每家公司中,都需要成千上万的AI模型来实现自动化和增强工作流程,并加速新数字产品的创新.现有的机器学习系统需要昂贵的数据科学人才,需要数月才能开发和部署单一模型,并生成业务和监管机构均不信任的“黑匣子”模型. H2O Driverless AI是一种…
在windows上极简安装GPU版AI框架 如果我们想在windows系统上安装GPU版本的AI框架,比如GPU版本的tesnorflow,通常我们会看到类似下面的安装教程 官方版本 安装CUDA 安装cuDNN 配置环境变量 安装python环境 安装gpu版的tensorflow开发包 咋看上去好像不是很复杂,但是其中坑多到你怀疑人生. 下载的cuDNN时候需要注册,而且因为cuDNN文件在外网,下载速度很慢. 比如不同版本的tensorflow和CUDA(cuDNN)的版本是有匹配关系的,…
1 - Iris数据集 Iris数据集是常用的机器学习分类实验数据集,特点是数据量很小,可以快速学习. 数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性. Sepal.Length(花萼长度),单位是cm Sepal.Width(花萼宽度),单位是cm Petal.Length(花瓣长度),单位是cm Petal.Width(花瓣宽度),单位是cm 可通过以上4个属性预测鸢尾花卉属于以下三个种类中的哪一类 Iris Setosa(山鸢尾) Iris Versicolour…
AI解决方案:边缘计算和GPU加速平台 一.适用于边缘 AI 的解决方案 AI 在边缘蓬勃发展.AI 和云原生应用程序.物联网及其数十亿的传感器以及 5G 网络现已使得在边缘大规模部署 AI 成为可能.但它需要一个可扩展的加速平台,能够实时推动决策,并让各个行业都能为行动点(商店.制造工厂.医院和智慧城市)提供自动化智能.这将人.企业和加速服务融合在一起,从而使世界变得"更小". 更紧密. 适用于各行各业的边缘 AI 解决方案 卓越购物体验 借助 AI 驱动的见解,各地的大型零售商可让…
2018年终总结之AI领域开源框架汇总 [稍显活跃的第一季度] 2018.3.04——OpenAI公布 “后见之明经验复现(Hindsight Experience Reply, HER)”的开源算法,这个新的算法保证人工智能可以像人类一样从自己的错误中汲取教训. 2018.3.13——第四范式免费对外开放旗下“第四范式智能客服平台”,这是智能客服市场的首款免费产品. 2018.3.18——Uber开源了神经进化算法开发的交互式可视化工具 VINE,该工具可以轻松实现神经网络群体的各种特定指标以…
2018  AI产业界大盘点 大事件盘点 “ 1.24——Facebook人工智能部门负责人Yann LeCun宣布卸任 Facebook人工智能研究部门(FAIR)的负责人Yann LeCun宣布卸任,之后将担任Facebook首席人工智能科学家,保留对FAIR的研究方向的控制.同时,原工作将由新任负责人Jérôme Pesenti  接替,Facebook应用机器学习小组(AML)和Yann  LeCun将同时向其汇报.而Jérôme Pesenti  将直接向Facebook  CTO汇报…
xgboost的可以参考:https://xgboost.readthedocs.io/en/latest/gpu/index.html 整体看加速5-6倍的样子. Gradient Boosting, Decision Trees and XGBoost with CUDA By Rory Mitchell | September 11, 2017  Tags: CUDA, Gradient Boosting, machine learning and AI, XGBoost   Gradie…