首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
tf.Variable和tensor的区别(转)
】的更多相关文章
tf.Variable和tensor的区别(转)
刷课过程中思考到Variable和Tensor之间的区别,尝试发现在如下代码中: a = tf.Variable(tf.ones(1)) b = tf.add(a,tf.ones(1)) 1 2 a是Variable,而b是Tensor.发现自己对Variable和Tensor之间的区分了解不多,所以搜索了一下,记录自己的思考,欢迎指教. Variable是可更改的(mutable),而Tensor是不可更改的.一个直接的例子就是Tensor不具有assign函数,而Variable含有. py…
tf.variable和tf.get_Variable以及tf.name_scope和tf.variable_scope的区别
在训练深度网络时,为了减少需要训练参数的个数(比如具有simase结构的LSTM模型).或是多机多卡并行化训练大数据大模型(比如数据并行化)等情况时,往往需要共享变量.另外一方面是当一个深度学习模型变得非常复杂的时候,往往存在大量的变量和操作,如何避免这些变量名和操作名的唯一不重复,同时维护一个条理清晰的graph非常重要. ==因此,tensorflow中用tf.Variable(),tf.get_variable(),tf.Variable_scope(),tf.name_scope()几个…
tf.Variable() 与tf.get_variable()的区别
每次调用 tf.Variable() 都会产生一个新的变量,变量名称是一个可选参数,运行命名相同,如果命名冲突会根据命名先后对名字进行处理, tf.get_variable()的变量名称是必填参数,tf.get_variable()会根据这个参数去创建或者获取变量.遇到重命名的变量创建且变量名没有设置成共享变量(所谓的共享是指在同一参数空间下的共享,参数空间名称不一样就不能共享了)时,就会报错.…
TF.VARIABLE、TF.GET_VARIABLE、TF.VARIABLE_SCOPE以及TF.NAME_SCOPE关系
1. tf.Variable与tf.get_variable tensorflow提供了通过变量名称来创建或者获取一个变量的机制.通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递. TensorFlow中通过变量名获取变量的机制主要是通过tf.get_variable和tf.variable_scope实现的. 当然,变量也可以通过tf.Varivale来创建.当tf.get_variable用于变量创建时,和tf.Variable的功能基本等价…
理解 tf.Variable、tf.get_variable以及范围命名方法tf.variable_scope、tf.name_scope
tensorflow提供了通过变量名称来创建或者获取一个变量的机制.通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递. 1. tf.Variable(创建变量)与tf.get_variable(创建变量 或 复用变量) TensorFlow中通过变量名获取变量的机制主要是通过tf.get_variable和tf.variable_scope实现的. 变量可以通过tf.Varivale来创建.当tf.get_variable用于变量创建时,和tf.…
深度学习原理与框架-Tensorflow基本操作-变量常用操作 1.tf.random_normal(生成正态分布随机数) 2.tf.random_shuffle(进行洗牌操作) 3. tf.assign(赋值操作) 4.tf.convert_to_tensor(转换为tensor类型) 5.tf.add(相加操作) tf.divide(相乘操作) 6.tf.placeholder(输入数据占位
1. 使用tf.random_normal([2, 3], mean=-1, stddev=4) 创建一个正态分布的随机数 参数说明:[2, 3]表示随机数的维度,mean表示平均值,stddev表示标准差 代码:生成一个随机分布的值 #1. 创建一个正态分布的随机数 sess = tf.Session() x = tf.random_normal([2, 3], mean=-1, stddev=4) print(sess.run(x)) 2. np.random.shuffle(y) # 对数…
使用tf.print()打印tensor内容
使用tf.Print()打印tensor内容,这是tensorflow中调试bug的一个手段,例子如下所示: import tensorflow as tf a = tf.Variable(tf.random_normal([3, 3, 1, 64], stddev=0.1)) a = tf.Print(a, [a], "a: ",summarize=9) init = tf.global_variables_initializer() sess = tf.Session() sess…
彻底弄懂tf.Variable、tf.get_variable、tf.variable_scope以及tf.name_scope异同
https://blog.csdn.net/qq_22522663/article/details/78729029 1. tf.Variable与tf.get_variabletensorflow提供了通过变量名称来创建或者获取一个变量的机制.通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递. TensorFlow中通过变量名获取变量的机制主要是通过tf.get_variable和tf.variable_scope实现的. 当然,变量也可以通过…
tensorflow共享变量 the difference between tf.Variable() and get_variable()
一般这样用tf.get_variable(): v = tf.get_variable(name, shape, dtype, initializer) 下面内容来源于 http://blog.csdn.net/u012436149/article/details/53696970 当我们需要共享变量的时候,需要使用tf.get_variable() 使用tf.Variable时,如果检测到命名冲突,系统会自己处理.使用tf.get_variable()时,系统不会处理冲突,而会报错,例子: i…
TensorFlow 辨异 —— tf.placeholder 与 tf.Variable
https://blog.csdn.net/lanchunhui/article/details/61712830 https://www.cnblogs.com/silence-tommy/p/7029561.html 二者的主要区别在于: tf.Variable:主要在于一些可训练变量(trainable variables),比如模型的权重(weights,W)或者偏执值(bias): 声明时,必须提供初始值: 名称的真实含义,在于变量,也即在真实训练时,其值是会改变的,自然事先需要指定初…