History of Monte Carlo Methods - Part 1】的更多相关文章

History of Monte Carlo Methods - Part 1 Some time ago in June 2013 I gave a lab tutorial on Monte Carlo methods at Microsoft Research. These tutorials are seminar-talk length (45 minutes) but are supposed to be light, accessible to a general computer…
Introduction To Monte Carlo Methods I’m going to keep this tutorial light on math, because the goal is just to give a general understanding. The idea of Monte Carlo methods is this—generate some random samples for some random variable of interest, th…
强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 数学符号看不懂的,先看看这里: 强化学习读书笔记 - 00 - 数学符号说明 蒙特卡洛方法简话 蒙特卡洛是一个赌城的名字.冯·诺依曼给这方法起了这个名字,增加其神秘性. 蒙特卡洛方法是一个计算方法,被广泛…
Monte Carlo methods https://zh.wikipedia.org/wiki/蒙地卡羅方法 通常蒙地卡羅方法可以粗略地分成两类:一类是所求解的问题本身具有内在的随机性,借助计算机的运算能力可以直接模拟这种随机的过程.例如在核物理研究中,分析中子在反应堆中的传输过程.中子与原子核作用受到量子力学规律的制约,人们只能知道它们相互作用发生的概率,却无法准确获得中子与原子核作用时的位置以及裂变产生的新中子的行进速率和方向.科学家依据其概率进行随机抽样得到裂变位置.速度和方向,这样模…
1. 蒙特卡罗方法的基本思想 蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法.该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基础的方法. 一个简单的例子可以解释蒙特卡罗方法,假设我们需要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如积分)的复杂程度是成正比的.而采用蒙特卡罗方法是怎么计算的呢?首先你把图形放到一个已知面积的方框内,然后假想你有一些豆子,把豆子均匀地朝这个方框内撒,散好后数这个图形之中有多少…
Dictum:  Nutrition books in the world. There is no book in life, there is no sunlight; wisdom without books, as if the birds do not have wings. -- Shakespeare 蒙特卡洛(Monte Carlo, MC)方法是一种不基于模型的方法.它不需要具有完备的环境知识,只要求具备经验,即来自于真实的或模拟的环境交互过程中的样本序列\(\{\mathca…
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hybrid Monte Carlo. 上一章讲到的平均场是统计物理学中常用的一种思想,将无法处理的复杂多体问题分解成可以处理的单体问题来近似,变分推断便是在平均场的假设约束下求泛函L(Q)极值的最优化…
Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte Carlo 10 JUNE 2013 This topic doesn’t have much to do with nicer code, but there is probably some overlap in interest. However, some of the topics th…
(学习这部分内容大约需要1.3小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布 \(p\) 的马尔科夫链对目标分布 \(p\) 进行采样. 预备知识 学习MCMC需要以下预备知识 条件分布: MCMC常常被用于从条件分布中采样. 蒙特卡洛估计(Monte Carlo estimation) 马尔科夫链(Markov chains) 学习目标 知道基本的问题设定: 即你希望从一个难以处理的分布中采样近似样…
蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法. 二 解决问题的基本思路 Monte Carlo方法的基本思想很早以前就被人们所发现和利用.早在17世纪,人们就知道用事件发生的"频率"来决定事件的"概率".19世纪人们用投针试验的 方法来决定圆周率π.本世纪40年代电子计算机的出现,特别是近年来高速电子计算机的出现,使得用数学方法在计算机上大量.快速地模拟这样的试验成为可 能.         为…