首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
POJ_2065 SETI 【同余高斯消元】
】的更多相关文章
POJ_2065 SETI 【同余高斯消元】
一.题目 SETI 二.分析 给定一个模数,一串字符串,字符串长度为N,相当于是N个方程的答案,而这N个方程中有N个未知数,要求的就是这N个未知数的值,很显然的高斯消元,遇到模数和除法,用逆元就好. 三.AC代码 #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <vector> #include <cmath>…
HDU 3364 Lanterns (高斯消元)
题意:有n个灯和m个开关,每个开关控制数个灯的状态改变,给出k条询问,问使灯的状态变为询问中的状态有多少种发法. 析:同余高斯消元法,模板题,将每个开关控制每个灯列成行列式,最终状态是结果列,同余高斯消元,如果无解就是0,否则结果就是1<<(自由变元的个数); 代码如下: #include<stdio.h> #include<algorithm> #include<iostream> #include<string.h> #include<…
POJ 2065 SETI [高斯消元同余]
题意自己看,反正是裸题... 普通高斯消元全换成模意义下行了 模模模! #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; ; inline int read(){ ,f=; ;c=getchar();} +c-';c=getchar();} return x*f; }…
HDU 3571 N-dimensional Sphere( 高斯消元+ 同余 )
N-dimensional Sphere Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 668 Accepted Submission(s): 234 Problem Description In an N-dimensional space, a sphere is defined as {(x1, x2 ... xN)| ∑(…
poj 2065 SETI 高斯消元
看题就知道要使用高斯消元求解! 代码如下: #include<iostream> #include<algorithm> #include<iomanip> #include<cmath> #include<cstring> using namespace std; ][],p,ans[]; ]; int pows(int a,int b) { ; while(b){ ) ans=(ans*a)%p; b>>=; a=(a*a)%p;…
POJ2065 SETI 高斯消元
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2065 题意概括 多组数据,首先输入一个T表示数据组数,然后,每次输入一个质数,表示模数,然后,给出一个长度为n的字符串,第i个位置的字符ch表示f(i)= ch == '*' ? 0 : ch-'a'+1 求解同余方程:(模数为p) f(1)=10a0+11a1+...+1n-1an-1 f(2)=20a0+21a1+...+2n-1an-1 f(3)=30a0+31a1+...+3n-1an-1…
POJ.2065.SETI(高斯消元 模线性方程组)
题目链接 \(Description\) 求\(A_0,A_1,A_2,\cdots,A_{n-1}\),满足 \[A_0*1^0+A_1*1^1+\ldots+A_{n-1}*1^{n-1}\equiv B[1](mod\ p)\] \[A_0*2^0+A_1*2^1+\ldots+A_{n-1}*2^{n-1}\equiv B[2](mod\ p)\] \[\ldots\ldots\ldots\] \[A_0*n^0+A_1*n^1+\ldots+A_{n-1}*n^{n-1}\equiv…
POJ SETI 高斯消元 + 费马小定理
http://poj.org/problem?id=2065 题目是要求 如果str[i] = '*'那就是等于0 求这n条方程在%p下的解. 我看了网上的题解说是高斯消元 + 扩展欧几里德. 然后我自己想了想,就用了高斯消元 + 费马小定理.因为%p是质数,所以很容易就用上了费马小定理,就是在除法的时候用一次就好了.还有就是两个模数相乘还要模一次. #include <cstdio> #include <cstdlib> #include <cstring> #inc…
高斯消元 分析 && 模板 (转载)
转载自:http://hi.baidu.com/czyuan_acm/item/dce4e6f8a8c45f13d7ff8cda czyuan 先上模板: /* 用于求整数解得方程组. */ #include <iostream> #include <string> #include <cmath> using namespace std; ; int equ, var; // 有equ个方程,var个变元.增广阵行数为equ, 分别为0到equ - 1,列数为var…
POJ 1166 The Clocks (爆搜 || 高斯消元)
题目链接 题意: 输入提供9个钟表的位置(钟表的位置只能是0点.3点.6点.9点,分别用0.1.2.3)表示.而题目又提供了9的步骤表示可以用来调正钟的位置,例如1 ABDE表示此步可以在第一.二.四.五个钟调正,如原来是0点,那么调正后为3点.问经过那些步骤可以导致9个钟的位置都在0点. 分析: 这个本来是一个高斯消元的题目,但是 听说周期4不是素数, 求解过程中不能进行取余.因为取余可能导致解集变大. 不过也有用高斯消元做的,下面是用高斯消元的分析 ” Discuss也有人讨论了,4不是质数…