#摘要 错误信息通过合成逼真的图像和视频进行传播这一严重问题,需要鲁棒的篡改检测方法来应对.尽管在检测静止图像上的面部篡改方面已付出了巨大的努力,但人们对于通过利用视频流中存在的时序信息,对视频中被篡改面部的识别方面的研究较少.循环卷积模型是一类深度学习模型,已证明能够有效地利用跨域图像流中的时序信息.因此,我们通过广泛的实验,提出了将这些模型中的变化与特定领域的面部预处理技术相结合的最佳策略(根据后文应该是面部对齐和CNN (DenseNet) + bidirectional RNN),从而在…
Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking  arXiv Paper Project Page:http://guanghan.info/projects/ROLO/ GitHub:https://github.com/wangxiao5791509/ROLO 摘要:本文提出了一种新的方法进行空间监督 RCNN 来进行目标跟踪.我们通过深度神经网络来学习到  loc…
EARLY PREDICTION OF ALZHEIMER'S DISEASE DEMENTIA BASED ON BASELINE HIPPOCAMPAL MRI AND 1-YEAR FOLLOW-UP COGNITIVE MEASURES USING DEEP RECURRENT NEURAL NETWORKS (基于基础海马MRI和1年随访认知测量的阿尔茨海默病痴呆早期预测) 原文链接 摘要 多模生物学.影像学和神经心理学标记物已经展示了区分阿尔茨海默病(AD)患者和认知正常的老年人的良…
A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain 原文链接 提要 目的 开发并验证一种深度学习算法,该算法可以基于脑部18F FDG PET来预测AD.轻度认知障碍或者二者均不是的诊断结果,并将其性能与放射学阅读器的性能进行比较 材料和方法 来自ADNI的18F-FDG PET脑图(含2109张图片,包括1002个病人)用于训练.验证,40张来自4…
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning 原文链接 摘要 向传统体系结构中引入残差连接使网络的性能变得更好,这提出了一个问题,即将Inception架构与残差连接结合起来是否能带来一些好处.在此,研究者通过实验表明使用残差连接显著地加速了Inception网络的训练.也有一些证据表明,相比没有残差连接的消耗相似的Inception网络,残差Inception网络在性能上具有微…
Rethinking the Inception Architecture for Computer Vision 原文链接 摘要 卷积网络是目前最新的计算机视觉解决方案的核心,对于大多数任务而言,虽然增加的模型大小和计算成本都趋向于转化为直接的质量收益(只要提供足够的标注数据去训练),但计算效率和低参数计数仍是各种应用场景的限制因素.目前,我们正在探索增大网络的方法,目标是通过适当的分解卷积和积极的正则化来尽可能地有效利用增加的计算 引言 深度卷积架构上的架构改进可以用来改善大多数越来越多地依…
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 原文链接 摘要 当前神经网络层之前的神经网络层的参数变化,引起神经网络每一层输入数据的分布产生了变化,这使得训练一个深度神经网络变得复杂.这样就要求使用更小的学习率,参数初始化也需要更为谨慎的设置.并且由于非线性饱和(注:如sigmoid激活函数的非线性饱和问题),训练一个深度神经网络会非常困难.我们称这个现象为…
Going deeper with convolutions 原文链接 摘要 研究提出了一个名为"Inception"的深度卷积神经网结构,其目标是将分类.识别ILSVRC14数据集的技术水平提高一个层次.这一结构的主要特征是对网络内部计算资源的利用进行了优化.这一目标的实现是通过细致的设计,使得在保持计算消耗稳定不变的同时增加网络的宽度与深度 引言 在物体识别方面,最大的收获其实并不来自于深度网络或是大型模型的单独使用,而是来自深度结构和传统机器视觉的协同作用,比如R-CNN算法 此…
Link of the Paper: https://arxiv.org/abs/1411.4389 Main Points: A novel Recurrent Convolutional Architecture ( CNN + LSTM ): both Spatially and Temporally Deep. The recurrent long-term models are directly connected to modern visual convnet models and…
Region-Based Convolutional Networks for Accurate Object Detection and Segmentation 概括 这是一篇2016年的目标检测的文章,也是一篇比较经典的目标检测的文章.作者介绍到,现在表现最好的方法非常的复杂,而本文的方法,简单又容易理解,并且不需要大量的训练集. 文章的大致脉络如图. 产生region proposal 文章提到了滑窗的方法,由于滑窗的方法缺点非常明显,就是每次只能检测一个aspect ratio,所以确…
Alexnet - 论文研读个人笔记 一.论文架构 摘要: 简要说明了获得成绩.网络架构.技巧特点 1.introduction 领域方向概述 前人模型成绩 本文具体贡献 2.The Dataset 数据集来源,训练数据进行的一些预处理 3.The Architecture 网络模型大体组成 ReLU Training on Multiple GPUs LRN (Local Response Normalization) Overlapping Pooling 网络模型整个具体架构 4.Redu…
MapReduce 论文研读 说明:本文为论文 <MapReduce: Simplified Data Processing on Large Clusters> 的个人理解,难免有理解不到位之处,欢迎交流与指正 . 论文地址:MapReduce Paper 1. MapReduce 编程模型 MapReduce 是 Google 提出的一种用于处理和生成大数据集的 编程模型 ,具象地可以理解成一个 框架 . 该框架含有两个由用户来实现的接口:map 和 reduce ,map 函数接收一个键…
VM-FT 论文研读 说明:本文为论文 <The Design of a Practical System for Fault-Tolerant Virtual Machines> 的个人理解,难免有理解不到位之处,欢迎交流与指正 . 论文地址:VM-FT 论文 本文的总结包括论文内容以及 MIT6.824 Lec4 中的授课内容,其中包含了论文中没有提及的一些细节 . 1. 前言 本论文主要介绍了一个用于提供 容错虚拟机 (fault-tolerant virtual machine) 的企…
Introduction 该文章首次采用深度学习方法来解决基于视频的行人重识别,创新点:提出了一个新的循环神经网络架构(recurrent DNN architecture),通过使用Siamese网络(孪生神经网络),并结合了递归与外貌数据的时间池,来学习每个行人视频序列的特征表示. Method (1)特征提取架构: 第一层:卷积神经网络,提取每个行人的外貌特征向量: 第二层:循环神经网络,让网络更好的提取时空信息: 第三层:时间池,让网络将不同长度的视频序列总结为一个特征向量. Siame…
论文地址:Video2GIF: Automatic Generation of Animated GIFs from Video 视频的结构化分析是视频理解相关工作的关键.虽然本文是生成gif图,但是其中对场景RankNet思想值得研究. 文中的视频特征表示也是一个视频处理值得学习的点.以前做的视频都是基于单frame,没有考虑到时空域,文中的参考文献也值得研读一下. 以下是对本文的研读,英语水平有限,有些点不知道用汉语怎么解释,直接用的英语应该更容易理解一些. Abstract 从源视频当中提…
论文地址:FLGCNN:一种新颖的全卷积神经网络,用于基于话语的目标函数的端到端单耳语音增强 论文代码:https://github.com/LXP-Never/FLGCCRN(非官方复现) 引用格式:Zhu Y, Xu X, Ye Z. FLGCNN: A novel fully convolutional neural network for end-to-end monaural speech enhancement with utterance-based objective funct…
Deep Attention Recurrent Q-Network 5vision groups  摘要:本文将 DQN 引入了 Attention 机制,使得学习更具有方向性和指导性.(前段时间做一个工作打算就这么干,谁想到,这么快就被这几个孩子给实现了,自愧不如啊( ⊙ o ⊙ ))   引言:我们知道 DQN 是将连续 4帧的视频信息输入到 CNN 当中,那么,这么做虽然取得了不错的效果,但是,仍然只是能记住这 4 帧的信息,之前的就会遗忘.所以就有研究者提出了 Deep Recurre…
VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION 论文地址 摘要 研究主要贡献是通过非常小的3x3卷积核的神经网络架构全面评估了增加深度对网络的影响,结果表明16-19层的网络可以使现有设置的网络性能得到显著提高 引言 为得到更好的准确率,在本文中,研究着眼于卷积神经网络中的深度问题.为此,固定了架构中的其他参数,并通过添加卷积层稳定地增加网络深度,在每层都使用非常小的3x3卷积核 ConvNet配置 为了公平衡…
论文原址:https://arxiv.org/abs/1904.01355 github: tinyurl.com/FCOSv1 摘要 本文提出了一个基于全卷积的单阶段检测网络,类似于语义分割,针对每个像素进行预测.RetinaNet,SSD,YOLOv3,Faster R-CNN都依赖于预定义的anchor boxes.本文的FCOX是anchor free ,proposal free类型的检测器.将预定义的anchors进行移除,进而减少了大量的计算以及内存占用,同时,anchor中的超参…
Zookeeper 研读 说明:本文为论文 < ZooKeeper : Wait-free coordination for Internet-scale systems > 的个人理解,难免有理解不到位之处,欢迎交流与指正 . 论文地址:Zookeeper Paper 1. Zookeeper 介绍 Zookeeper 是用来协调分布式应用的服务框架,它是一个通过冗余容灾的服务器集群,提供 API 给 client ,用以实现一些 原语( 如配置管理.成员管理.领导人选举.分布式锁等 ),在…
摘要 本文提出了一种用于训练支持向量机的新算法:序列最小优化算法(SMO).训练支持向量机需要解决非常大的二 次规划(QP)优化问题.SMO 将这个大的 QP 问题分解为一系列最小的 QP 问题.这些小的 QP 问题可以通过解析来解决, 从而避免了将耗时的数值 QP 优化用作内部循环.SMO 所需的内存量与训练集大小成线性关系,这使 SMO 可以处理非常大 的训练集.由于避免了矩阵计算,因此对于各种测试问题,SMO 随训练集大小在线性和二次方之间缩放,而标准分块 SVM 算法随训练集大小在线性和…
论文标题:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 标题翻译:OverFeat:使用卷积神经网络集成识别,定位和检测 论文作者:Pierre Sermanet  David Eigen  Xiang Zhang  Michael Mathieu  Rob Fergus  Yann LeCun 论文地址:https://arxiv.org/pdf/1312.62…
1.Introduction DL解决VO问题:End-to-End VO with RCNN 2.Network structure a.CNN based Feature Extraction 论文使用KITTI数据集. CNN部分有9个卷积层,除了Conv6,其他的卷积层后都连接1层ReLU,则共有17层. b.RNN based Sequential Modelling RNN is different from CNN in that it maintains memory of it…
1 简介 随着图卷积神经网络在近年来的不断发展,其对于图结构数据的建模能力愈发强大.然而现阶段的工作大多针对简单无向图或者异质图的表示学习,对图中边存在方向和类型的特殊图----多关系图(Multi-relational Graph)的建模工作较少,且大多存在着两个问题: (1)整体网络模型的过参数化, (2)仅针对于结点的表示学习. 针对这两个问题,本论文提出了一种基于组合的图卷积神经网络来同时建模结点和边的表示,为了降低大量的边类型带来的参数量,作者采用了向量分解的方式,所有的边类型表示通过…
目录 摘要 一.引言 二.相关工作 基于视图和体素的方法 点云上的深度学习 相关性学习 三.形状意识表示学习 3.1关系-形状卷积 建模 经典CNN的局限性 变换:从关系中学习 通道提升映射 3.2性质 置换不变性 对刚性变换鲁棒 点相互作用 权重共享 3.3再讨论2D网格卷积 3.4用于点云分析的RS-CNN 3.5应用细节 四.实验 4.1点云分析 形状分类 形状部件分割 法向量估计 4.2 RS-CNN设计分析 消融研究 聚合函数A 映射函数M 低级关系h 点置换和刚性变换的鲁棒性 4.3…
UC Berkeley的Deepak Pathak 使用了一个具有图像级别标记的训练数据来做弱监督学习.训练数据中只给出图像中包含某种物体,但是没有其位置信息和所包含的像素信息.该文章的方法将image tags转化为对CNN输出的label分布的限制条件,因此称为 Constrained convolutional neural network (CCNN). 该方法把训练过程看作是有线性限制条件的最优化过程: 其中是一个隐含的类别分布,是CNN预测的类别分布.目标函数是KL-divergen…
这篇论文主要介绍了如何使用图片级标注对像素级分割任务进行训练.想法很简单却达到了比较好的效果.文中所提到的loss比较有启发性. 大体思路: 首先同FCN一样,这个网络只有8层(5层VGG,3层全卷积).不同的是由于图片只有image-level的标注,所以输出图像的清晰度无法保证,所以没有反卷积.图片的分辨率很低很低,但这相对于我们的期望已经很好了. FCN框图 LOSS: 这个loss说明了很多道理,我们先贴原文: 我们只关注1.该图片中有label的dense output2.含有该lab…
一.FCN中的CNN 首先回顾CNN测试图片类别的过程,如下图: 主要由卷积,pool与全连接构成,这里把卷积与pool都看作图中绿色的convolution,全连接为图中蓝色的fully connected.卷积主要是获取高维特征,pool使图片缩小一半,全连接与传统神经网络相似作为权值训练,最后通过softmax输出概率最高的类别.上图中nxn表示feature map(特征图)大小, 如原图大小为227x227,经过卷积与pool后得到55x55的特征图(一层的特征图可以有多个类别).注意…
Deep Residual Learning for Image Recognition 原文链接 摘要 深度神经网络很难去训练,本文提出了一个残差学习框架来简化那些非常深的网络的训练,该框架使得层能根据其输入来学习残差函数而非原始函数.本文提出证据表明,这些残差网络的优化更简单,而且通过增加深度来获得更高的准确率 引言 深度网络很好的将一个端到端的多层模型中的低/中/高级特征以及分类器整合起来,特征的等级可以通过所堆叠层的数量来丰富.有结果显示,模型的深度发挥着至关重要的作用 在深度的重要性的…
ShuffleNet: An Extremely Efficient Convolutional Neural Network for MobileDevices…