论文链接:https://arxiv.org/abs/2003.05597 code:https://github.com/Thinklab-SJTU/CSL_RetinaNet_Tensorflow 文章概要: 本文展示了目前流行的基于回归的旋转目标检测方法都存在或多或少的不连续边界问题,问题直接由角度的周期性或角点的顺序导致.根本原因则是理想的预测超出了所定义的范围,导致边界问题的产生,即产生了一个较大的损失值.针对上述问题,本文设计了一种没有边界问题的预测方法.该方法的核心是将角度预测从回…
目录 Single Shot Detectors for Object Detection Deep learning-based object detection with OpenCV   这篇文章只是基于OpenCV使用SSD算法执行目标检测:不涉及到SSD的理论原理.不涉及训练过程:也就是说仅仅使用训练好的模型文件基于OpenCV做测试:包括图片和视频:   只用作笔记,原教程地址:Object detection with deep learning and OpenCV Single…
目标检测在图形识别的基础上有了更进一步的应用,但是代码也更加繁琐,TensorFlow专门为此开设了一个object detection API,接下来看看怎么使用它. object detection API 配置 首先,能到目标检测了应该至少已经安装好了TensorFlow及其相关依赖.这里主要讲在TensorFlow可以正常使用的基础上目标检测API的配置. (1)下载TensorFlow object detection API 去TensorFlow github上下载整个models…
Hierarchical Object Detection with Deep Reinforcement Learning NIPS 2016 WorkShop  Paper : https://arxiv.org/pdf/1611.03718v1.pdf Project Page : https://github.com/imatge-upc/detection-2016-nipsws  摘要: 我们提出一种基于深度强化学习的等级物体检测方法 (Hierarchical Object  De…
ACCEPTED CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2001 Rapid Object Detection using a Boosted Cascade of Simple Features 简单特征的优化级联在快速目标检测中的应用 Paul Viola                                                            Michael Jones viola@merl.…
作者:Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun SPPnet.Fast R-CNN等目标检测算法已经大幅降低了目标检测网络的运行时间.可是尽管如此,仍然不能在工程上做到实时检测,这主要是因为region proposal computation耗时在整个网络用时中的占比较高.比如,Fast R-CNN如果忽略提取region proposals所花费的时间,就几乎可以做到实时性.为此,该论文介绍了Region Proposal N…
论文标题:Faster R-CNN: Down the rabbit hole of modern object detection 论文作者:Zhi Tian , Weilin Huang, Tong He , Pan He , and Yu Qiao 论文地址:https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/ 论文地址:Object detect…
背景知识: Zeroshot Learning,零次学习. 模型 对于 训练集 中 没有出现过 的 类别,能自动创造出相应的映射: X→Y. Low/Few-shot Learning.One-shot Learning,少/一次学习. 训练集中,每个类别 都有样本,但都只是 少量样本 (甚至只有一个). 摘要: 提出了一个Low-Shot Transfer Detector (LSTD),利用丰富的源领域(Source Domain)知识来构建一个高效的目标域(Target Domain)检测…
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 8. Edge Detection 边缘检测也是图像处理中的一个基本任务.传统的边缘检测方法有基于梯度 算子,尤其是 Sobel 算子,以及经典的 Canny 边缘检测.到现在,Cann…
本文对CV中目标检测子方向的研究,整理了如下的相关笔记(持续更新中): 1. Cascade R-CNN: Delving into High Quality Object Detection 年份:2018:关键词:Cascade RCNN:引用量:749:推荐指数(1-5):5 描述:一般正常的检测器是用0.5的IOU阈值(用于提出正负样本)训练,但如果提高IOU阈值会降低检测器的表现.这有两个原因: 当训练时,高IOU阈值会减少提出的正样本,引发exponentially vanishin…