多项式的点值表示(Point Value Representation) 设多项式的系数表示(Coefficient Representation): \[ \begin{align*} \mathrm P_a(x)&=a_0+a_1x+a_2x^2+\cdots+a_{n-1}x^{n-1} \\ &= \sum_{i=0}^{n-1}a_ix^i \end{align*} \] 则我们对上面的式子可以代入不同的 \(n\) 个 \(x\) 的值,构成一个 \(n\) 维向量: \[ \…
啊…本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一个人的自学能力锻炼到了极致qwqqwqqwq 好的,那我们就开始我们的飞飞兔FFTFFTFFT算法吧! 偷偷说一句,FFTFFTFFT的代码十分的短哦~并且如果你不喜欢看算法,你可以翻到最下面看心得哟! 写在前面 ·好多你不理解的地方在代码里就只有半行. ·三个引理中,只有消去引理跟算法的实现没有关系——消去引理主要是用来证明的qwqqwqqwq. ·不是特别熟悉矩阵的同学,看到“矩阵”字样时不要慌,矩阵只是辅助工具,跟算法的实现关系…
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 写在前面 一些约定 循环卷积 DFT卷积的本质 Bluestein's Algorithm 例题 分治FFT 例题 FFT的弱常数优化 复杂算式中减少FFT次数 例题 利用循环卷积 小范围暴力 例题 快速幂乘法次数的优化 FFT的强常数优化 DF…
FFTFFT·Fast  Fourier  TransformationFast  Fourier  Transformation快速傅立叶变换 P3803 [模板]多项式乘法(FFT) 参考上文 首先介绍, 欧拉公式: 公式描述:公式中e是自然对数的底,i是虚数单位. 快速傅里叶变换(FFT)详解 前言: DFT:离散傅里叶变换—>O(n2)计算多项式乘法 FFT:快速傅里叶变换—>O(n∗log(n)O(n∗log⁡(n)计算多项式乘法 FNTT/NTT:快速傅里叶变换的优化版—>优…
定义 多项式 系数表示法 设\(A(x)\)表示一个\(n-1\)次多项式,则所有项的系数组成的\(n\)维向量\((a_0,a_1,a_2,\dots,a_{n-1})\)唯一确定了这个多项式. 即 \[A(x)=\sum \limits_{i=0}^{n-1}a_ix^i\] \[=a_0+a_1x+a_2x^2+\dots+a_{n-1}x^{n-1}\] 点值表示法 将\(n\)个互不相同的\(x\)代入多项式,会得到\(n\)个互不相同的取值\(y\).设他们组成的\(n\)维向量分别…
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多项式为\(A(x)=\sum_{i=0}^{n}a_ix^i,B(x)=\sum_{i=0}^{m}b_ix^i\) Prerequisite knowledge: 初中数学知识(手动滑稽) 最简单的多项式方法就是逐项相乘再合并同类项,写成公式: 若\(C(x)=A(x)B(x)\),那么\(C(x…
相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\mathcal{F}[f(t)]=\int\limits_{-\infty}^\infty f(t)e^{-iwt}dt \] 傅里叶逆变换是将频率域上的F(w)变成时间域上的函数f(t),一般称\(f(t)\)为原函数,称\(F(w)\)为象函数.原函数和象函数构成一个傅里叶变换对. \[ f(t)…
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/例题与常用套路[入门] 前置技能 对复数以及复平面有一定的了解 对数论要求了解:逆元,原根,中国剩余定理 对分治有充足的认识 对多项式有一定的认识,并会写 $O(n^2)$ 的高精度乘法 本文概要 多项式定义及基本卷积形式 $Karatsuba$ 乘法 多项式的系数表示与点值表示,以及拉格朗日插值法…
目录 FFT 系数表示法 点值表示法 复数 DFT(离散傅里叶变换) 单位根的性质 FFT(快速傅里叶变换) IFFT(快速傅里叶逆变换) NTT 阶 原根 扩展知识 FFT 参考blog: 十分简明易懂的FFT(快速傅里叶变换) 快速傅里叶变换(FFT)详解 (下面的图片是来自于这2篇博客里面的,仔细看可以发现右下角有水印--) 系数表示法 一个一元\(n\)次多项式\(f(x)\)可以被表示为:\[f(x) = \sum_{i = 0}^{n}a_{i}x^{i}\] 即用\(i\)次项的系…
转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段.    我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句话说,给你两个字符串,你需要回答,B串是否是A串的子串(A串是否包含B串).比如,字符串A="I'm matrix67",字符串B="matrix",我们就说B是A的子串.…