本章重点: 简单的论证了即使有Noise,机器依然可以学习,VC Dimension对泛化依然起作用:介绍了一些评价Model效果的Error Measurement方法. 一论证即使有Noisy,VC Dimension依然有效: 下图展示了主要思想,以前的数据集是确定的(Deterministic),现在加了Noisy变成了分布函数了,即对每个一x,y出现的概率是P(y|x).可以这么理解,概率表示的是对事件确定的程度,以前确定性的数据集是 P(y|x) = 1, for y = f(x)…