编程作业2.1:Logistic regression】的更多相关文章

Exercise 1:Linear Regression---实现一个线性回归 关于如何实现一个线性回归,请参考:http://www.cnblogs.com/hapjin/p/6079012.html Exercise 2:Logistic Regression---实现一个逻辑回归 问题描述:用逻辑回归根据学生的考试成绩来判断该学生是否可以入学. 这里的训练数据(training instance)是学生的两次考试成绩,以及TA是否能够入学的决定(y=0表示成绩不合格,不予录取:y=1表示录…
编程作业文件: machine-learning-ex2 1. Logistic Regression (逻辑回归) 有之前学生的数据,建立逻辑回归模型预测,根据两次考试结果预测一个学生是否有资格被大学录取. 载入学生数据,第1,2列分别为两次考试结果,第3列为录取情况. % Load Data % The first two columns contain the exam scores and the third column contains the label. data = load(…
ufldl学习笔记与编程作业:Logistic Regression(逻辑回归) ufldl出了新教程,感觉比之前的好,从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说.不必深究其它机器学习的算法,能够直接来学dl. 于是近期就開始搞这个了,教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习链接:http://ufldl.stanford.edu/tutorial/su…
题目 在本部分的练习中,您将使用正则化的Logistic回归模型来预测一个制造工厂的微芯片是否通过质量保证(QA),在QA过程中,每个芯片都会经过各种测试来保证它可以正常运行.假设你是这个工厂的产品经理,你拥有一些芯片在两个不同测试下的测试结果,从这两个测试,你希望确定这些芯片是被接受还是拒绝,为了帮助你做这个决定,你有一些以前芯片的测试结果数据集,从中你可以建一个Logistic回归模型. 编程实现 在这部分训练中,我们将要通过加入正则项提升逻辑回归算法.简而言之,正则化是成本函数中的一个术语…
题目 在这部分的练习中,你将建立一个逻辑回归模型来预测一个学生是否能进入大学.假设你是一所大学的行政管理人员,你想根据两门考试的结果,来决定每个申请人是否被录取.你有以前申请人的历史数据,可以将其用作逻辑回归训练集.对于每一个训练样本,你有申请人两次测评的分数以及录取的结果.为了完成这个预测任务,我们准备构建一个可以基于两次测试评分来评估录取可能性的分类模型. 编程实现 1.Visualizing the data 在开始实现任何学习算法之前,如果可能的话,最好将数据可视化. import nu…
%% ============ Part : Compute Cost and Gradient ============ % In this part of the exercise, you will implement the cost and gradient % for logistic regression. You neeed to complete the code in % costFunction.m % Setup the data matrix appropriately…
ufldl学习笔记与编程作业:Softmax Regression(softmax回归) ufldl出了新教程.感觉比之前的好,从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说,不必深究其它机器学习的算法,能够直接来学dl. 于是近期就開始搞这个了.教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习链接:http://ufldl.stanford.edu/tutoria…
ufldl学习笔记与编程作业:Softmax Regression(vectorization加速) ufldl出了新教程,感觉比之前的好.从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说,不必深究其它机器学习的算法,能够直接来学dl. 于是近期就開始搞这个了.教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节是对ufldl学习笔记与编程作业:Softmax Regress…
编程作业有两个文件 1.machine-learning-live-scripts(此为脚本文件方便作业) 2.machine-learning-ex1(此为作业文件) 将这两个文件解压拖入matlab工作区内并将machine-learning-live-scripts内的ex1.mlx拖入到machine-learning-ex1\ex1中 在命令提示符区输入subimit命令,并填写邮箱与提交凭证来提交作业. 1.A simple MATLAB function 修改warmUpExerc…
ufldl学习笔记与编程作业:Linear Regression(线性回归) ufldl出了新教程,感觉比之前的好.从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说.不必深究其它机器学习的算法.能够直接来学dl. 于是近期就開始搞这个了,教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习链接:http://ufldl.stanford.edu/tutorial/supe…
机器学习二 逻辑回归作业   作业在这,http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/hw2.pdf 是区分spam的. 57维特征,2分类问题.采用逻辑回归方法.但是上述数据集在kaggle中没法下载,于是只能用替代的方法了,下了breast-cancer-wisconsin数据集. 链接在这http://archive.ics.uci.edu/ml/machine-learning-databases/breast-c…
本作业使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于逻辑回归的一个编程练习,可参考:http://www.cnblogs.com/hapjin/p/6078530.html 下面使用逻辑回归实现多分类问题:识别手写的阿拉伯数字(0-9),使用神经网络实现:识别手写的阿拉伯数字(0-9),请参考:神经网络实现 数据加载到Matlab中的格式如下: 一共有5000个训练样本,每个训练样本是400维的列向量(20X…
Author: 相忠良(Zhong-Liang Xiang) Email: ugoood@163.com Date: Sep. 23st, 2017 根据 Andrew Ng 老师的深度学习课程课后作业及指导,参照吴老师代码完成了这个LR的coding. (重要)吴老师建议,数据应组织成下列形式,有利于扫除编程bug: X.shape = (n_x, m), n_x是样本维度,m是样本个数 Y.shape = (1, m) w, b应该分开,其中: b is a scaler w.shape =…
在上吴恩达老师的深度学习课程,在coursera上. 我觉得课程绝对值的49刀,但是确实没有额外的钱来上课.而且课程提供了旁听和助学金. 之前在coursera上算法和机器学习都是直接旁听的,这些课旁听和注册没有任何区别.这回deeplearning.ai系列的课程,旁听无法提交作业,无法做程序作业. 去写了申请,希望申请助学金.助学金结果需要15天,我有等不及了,就先旁听了课程. 发现,其实旁听也是可以做程序作业的. 最开始看到这里上锁的课程作业,你可能认为无法看到作业,实际上,你只需要点开第…
这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解和初步掌握机器学习的人来说是不二的选择.这门课程涵盖了机器学习的一些基本概念和方法,同时这门课程的编程作业对于掌握这些概念和方法起到了巨大的作用. 课程地址 https://www.coursera.org/learn/machine-learning 笔记主要是简要记录下课程内容,以及MATLAB…
第三周编程作业:Logistic Regression 代码包在gitlab上:https://gitlab.com/luntai/Machine_Learning…
此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探讨. 课程网址:https://www.coursera.org/learn/machine-learning/home/welcome Week 2:Linear Regression with Multiple Variables笔记:http://blog.csdn.net/ironyoung…
题目: 在本次练习中,你将使用逻辑回归和神经网络来识别手写数字(从0到9). 今天,自动手写数字识别被广泛使用,从识别信封上的邮政编码到识别银行支票上的金额.这个练习将向你展示如何将你所学的方法用于此分类任务. 在第一部分中,将扩展以前的逻辑回归,并将其应用于one-vs-all分类. 关于数据:本次的数据是以.mat格式储存的,mat格式是matlab的数据存储格式,按照矩阵保存,与numpy数据格式兼容,适合于各种数学运算,因此这次主要使用numpy进行运算. ex3data1中有5000个…
前言: 本节来练习下logistic regression相关内容,参考的资料为网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex4/ex4.html.这里给出的训练样本的特征为80个学生的两门功课的分数,样本值为对应的同学是否允许被上大学,如果是允许的话则用'1'表示,否则不允许就用'0'表示,这是一个典型的二分类问题.在此问题中,给出的80个…
❄❄❄❄❄❄❄❄[回到目录]❄❄❄❄❄❄❄❄ 本次编程作业中,需要完成的代码有如下几部分: [⋆] warmUpExercise.m - Simple example function in Octave/MATLAB[⋆] plotData.m - Function to display the dataset[⋆] computeCost.m - Function to compute the cost of linear regression[⋆] gradientDescent.m -…
问题描述:使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 一.逻辑回归实现: 数据加载到octave中,如下图所示: ①样本数据的可视化 随机选择100个样本数据,使用Octave可视化的结果如下: ②使用逻辑回归来实现多分类问题(one-vs-all) 所谓多分类问题,是指分类的结果为三类以上.比如,预测明天的天气结果为三类:晴(用y==1表示).阴(用y==2表示).雨(用y==3表示) 分类的思想,其实与逻辑…
最近开始学习机器学习的相关理论知识,准备把自己的整个学习心得整理汇集成博客,一来可以督促自己,二来可以整理思路,对问题有一个更加透彻的理解,三来也可以放在网上和大家分享讨论,促进交流. 由于这次的学习过程主要是以数学理论以及对应的编程为主,因此,整个过程中,我将以Kaggle上的Titanic上的数据作为练习背景. 今天以logistic regression为主,主要包括理论部分以及对应的编程实验结果. 理论部分 logistic regression主要应用于二值分类问题,首先我们需要引入伯…
Logistic Regression with a Neural Network mindset You will learn to: Build the general architecture of a learning algorithm, including: Initializing parameters(初始化参数) Calculating the cost function and its gradient(计算代价函数,和他的梯度) Using an optimization…
Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exercise of the deep learning specialization. In this notebook you will build your first image recognition algorithm. You will build a cat classifier that r…
本系列内容大部分来自Standford公开课machine learning中Andrew老师的讲解,附加自己的一些理解,编程实现和学习笔记. 第一章 Logistic regression 1.逻辑回归 逻辑回归是一种监督学习的分类算法,相比较之前的线性回归算法,差别在于它是一个分类算法,这也意味着y不再是一个连续的值,而是{0,1}的离散值(两类问题的情况下). 当然这依然是一个判别学习算法,所谓判别学习算法,就是我们直接去预测后验 ,或者说直接预测判别函数的算法.当然相对应的生成学习算法,…
coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regression方法进行ctr的预测工作,因为当时主要使用的是成型的工具,对该算法本身并没有什么比较深入的认识,不过可以客观的感受到Logistic Regression的商用价值. Logistic Regression Model A. objective function       其中z的定义域是(-I…
我们将讨论逻辑回归. 逻辑回归是一种将数据分类为离散结果的方法. 例如,我们可以使用逻辑回归将电子邮件分类为垃圾邮件或非垃圾邮件. 在本模块中,我们介绍分类的概念,逻辑回归的损失函数(cost functon),以及逻辑回归对多分类的应用. 我们还涉及正规化. 机器学习模型需要很好地推广到模型在实践中没有看到的新例子. 我们将介绍正则化,这有助于防止模型过度拟合训练数据. Classification 分类问题其实和回归问题相似,不同的是分类问题需要预测的是一些离散值而不是连续值. 如垃圾邮件分…
第四周 编程作业: Multi-class Classification and Neural Networks 这周作业与上一周有许多相同的部分,比如longistic regression中的lrCostfunction函数 求costJ和gradient.要求向量化! insist it!…
第二周编程作业:Linear Regression 分为单一变量和多变量,假想函数为:hθ(x)=θ0+θ1x1+θ2x2+θ3x3+⋯+θnxn.明显已经包含单一变量的情况,所以完成多变量可以一并解决单一变量问题. 其中,需要注意的地方: Feature normalization中,sigma是均方误差(标准差).mu是某一列feature的平均值. 代码包上传到gitlab,所有问题的公式都在:coursera的lecture上. 最终结果:Nice work!…
logistic regression是分类算法中非常重要的算法,也是非常基础的算法.logistic regression从整体上考虑样本预测的精度,用判别学习模型的条件似然进行参数估计,假设样本遵循iid,参数估计时保证每个样本的预测值接近真实值的概率最大化.这样的结果,只能是牺牲一部分的精度来换取另一部分的精度.而svm从局部出发,假设有一个分类平面,找出所有距离分类平面的最近的点(support vector,数量很少),让这些点到平面的距离最大化,那么这个分类平面就是最佳分类平面.从这…