We start with the fuzzy binomial. Then we discuss the fuzzy Poisson probability mass function. Fuzzy Binomial Let $E$ be a non-empty, proper subset of $X=\{x_1,x_2,x_3,...,x_n\}$. Let $P(E)=p$ so that $P(E^{'})=1-p$ where $p\in (0,1)$. Suppose we hav…
title: [概率论]3-9:多随机变量函数(Functions of Two or More Random Variables) categories: - Mathematic - Probability keywords: - Convolution - 卷积 toc: true date: 2018-03-19 10:12:34 Abstract: 本文介绍多随机变量的函数 Keywords: 离散多随机变量的函数,连续多随机变量的函数,卷积 开篇废话 任何一个领域的顶级人才都是需要很…
title: [概率论]3-1:随机变量和分布(Random Variables and Discrete Distributions) categories: Mathematic Probability keywords: Random Variables 随机变量 Discrete Distributions 离散分布 Uniform Distributions on Integers 均匀分布 Binomial Distributions 二项分布 toc: true date: 201…
Let $X=\{x_1,x_2,...,x_n\}$ be a finite set and let $P$ be a probability function defined on all subsets of $X$ with $P(\{x_i\})=a_i,~1\leq i \geq n,~0<a_i<1$ for i and $\sum^{n}_{i=1}=1$. $X$ together with $P$ is a discrete (finite) probability dis…
一起啃PRML - 1.2 Probability Theory @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in the field of pattern recognition is that of uncertainty. 可以看出概率论在模式识别显然是非常重要的一大块. 读其他书的时候在概率这方面就也很纠结过. 我们也还是通过一个例子来理解一下Probability Theory里面一些重要的概念. Ima…
A. Ivan the Fool and the Probability Theory Recently Ivan the Fool decided to become smarter and study the probability theory. He thinks that he understands the subject fairly well, and so he began to behave like he already got PhD in that area. To p…
1.Probability mass functions (pmf) and Probability density functions (pdf) pmf 和 pdf 类似,但不同之处在于所适用的分布类型 PMF -> <font color='green'>discrete distributions</font>, while pdf -> <font color='green'>continuous distributions</font>…
概率(Probability):事件发生的可能性的数值度量. 组合(Combination):从n项中选取r项的组合数,不考虑排列顺序.组合计数法则:. 排列(Permutation):从n项中选取r项的组合数,考虑排列顺序.排列计数法则:. 贝叶斯定理(Bayes's Theorem):获取新信息后对概率进行修正的一种方法.先验概率--->新信息--->应用贝叶斯定理--->后验概率.具体请见:贝叶斯定理推导(Bayes's Theorem). 离散型概率分布(Discrete Pro…
可测空间(Measurable Space)和测度空间(Measure Space) 集合X,X上的一个σ-algebra A,则(X,A)被称为可测空间(measurable space) 再在A上定义一个测度μ,则(X,A,μ)被称为测度空间(measure space) 概率空间(Probability Space) 对于一个测度空间$(\Omega, F, P)$,  其中$\Omega$被称为Sample Space,F被称为events,P为概率测度,其中P在整个Sample Spa…
一个例子: 两个盒子: 一个红色:2个苹果,6个橘子; 一个蓝色:3个苹果,1个橘子; 如下图: 现在假设随机选取1个盒子,从中.取一个水果,观察它是属于哪一种水果之后,我们把它从原来的盒子中替换掉.重复多次. 假设我们40%的概率选到红盒子,60%的概率选到蓝盒子.并且当我们把取出的水果拿掉时,选择盒子中任何一个水果还是等可能的. 问题: 1.整个过程中,取得苹果的概率有多大? 2.假设已经去的了一个橘子的情况下,这个橘子来自蓝盒子的可能性有多大? (这里,推荐一篇好文:数学之美番外篇:平凡而…