Booststrap aggregating (有些地方译作:引导聚集),也就是通常为大家所熟知的bagging.在维基上被定义为一种提升机器学习算法稳定性和准确性的元算法,常用于统计分类和回归中. 而Boosting在维基中被定义为一种主要用来减少偏差(Bias)和同时也可降低方差(Variance)的机器学习元算法,是一个将弱学习器转化为强学习器的机器学习算法族.最初由Kearns 和 Valiant (1988,1989)提出的一个问题发展而来:Can a set of weak lear…
if you aggregate the predictions of a group of predictors,you will often get better predictions than with the best individual predictor. a group of predictors is called an ensemble:this technique is called Ensemble Learning,and an Ensemble Learning a…