Learning to act by predicting the future】的更多相关文章

Dosovitskiy, Alexey, and Vladlen Koltun. "Learning to act by predicting the future." arXiv preprint arXiv:1611.01779 (2016). vizdoom比赛track2的冠军. 要点: 1.使用了监督学习,而不是增强学习. 2.克服sparse reward的问题. 3.在test时不同目标的泛化能力强.更加长远的作用就是减少了人为reward的制定. 实验分析: 1.通过下…
来自:CVPR 2014   作者:Yi Sun ,Xiaogang Wang,Xiaoao Tang 题目:Deep Learning Face Representation from Predicting 10,000 Classes 主要内容:通过深度学习来进行图像高级特征表示(DeepID),进而进行人脸的分类. 长处:在人脸验证上面做,能够非常好的扩展到其它的应用,而且夸数据库有效性:在数据库中的类别越多时,其泛化能力越强,特征比較少,不像其它特征好几K甚至上M,好的泛化能力+只是拟合…
census = read.csv("census.csv")library(caTools)set.seed(2000)spl = sample.split(census$over50k,SplitRatio = 0.6)train = subset(census,spl == TRUE)test = subset(census, spl == FALSE)# use the logistic regressionglm = glm(over50k ~. , data = train…
一些RL的文献(及笔记) copy from: https://zhuanlan.zhihu.com/p/25770890  Introductions Introduction to reinforcement learningIndex of /rowan/files/rl ICML Tutorials:http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf NIPS Tutorials:CS 294 Deep Reinforcement Lea…
终于找到ML日报的微信链接,抄之...................................... 请拜访原文链接:[祖母论与还原论之争]为什么计算机人脸识别注定超越人类?评价:         从直觉上,总体视觉框架,我更推崇maar视觉理论,即还原论.因为对于广泛的视觉识别,此解释在哲学意义上完备性比其他解释更好.但对于人脸识别,这就难说了.就像骑自行车需要学习,学习之后便成为"程序记忆",固定为记忆系统.对于人脸识别这种极为特殊且频次极高的行为,千万年的人类进化,是否在…
A Brief Overview of Deep Learning (This is a guest post by Ilya Sutskever on the intuition behind deep learning as well as some very useful practical advice. Many thanks to Ilya for such a heroic effort!) Deep Learning is really popular these days. B…
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcement learning Structured prediction Feature engineering Feature learning Online learning Semi-supervised learning Unsupervised learning Learning to rank…
https://collegestar.org/modules/game-based-learning Introduction   Appalachian State University Game-based learning has been growing in popularity for years, with researchers noticing that good game experiences and effective educational experiences h…
Speaker: Andrew Ng   1. Introduction 1.A comptuter program is said to learn from experience E with respect to some task T and some performance measure P, if it's performance on T, as measured by P, improves with experience E. 机器学习算法完成的目标是T 机器学习的过程积累经…
https://www.youtube.com/watch?v=UISiuiPd_FY will 说话的当下决定的将来要做什么,in the moment be going to 有意图去做,但没有计划 present continuous 现在进行时是有明确的计划.   This English lesson explains the difference between WILL, BE GOING TO, and the PRESENT CONTINUOUS when talking ab…
需求说明:深度学习FPGA实现知识储备 来自:http://blog.csdn.net/stdcoutzyx/article/details/41596663 说明:图文并茂,言简意赅. 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先说几点自己对于CNN的感触.先明确一…
ICLR 2016 - Workshop Track International Conference on Learning Representations May 2 - 4, 2016, Caribe Hilton, San Juan, Puerto Rico Please see the venue website (http://www.iclr.cc/doku.php?id=iclr2016:main) for more information. Submission deadlin…
I joined Analytics Vidhya as an intern last summer. I had no clue what was in store for me. I had been following the blog for some time and liked the community, but did not know what to expect as an intern. The initial few days were good – all the in…
1 前言 在最新Nature的Machine Intelligence 中Lecun.Hinton和Bengio三位大牛的Review文章Deep Learning中.最后谈The Future Of Deep Learning中.有这么一段话: "We expect much of the future progress in vision to come from systems that are trained end-to- end and combine ConvNets with R…
Problem: high-dimensional time series forecasting ?? what is "high-dimensional" time series forecasting? one dimension for each individual time-series. n个time series为n维. A need for exploiting global pattern and coupling them with local calibrati…
目录 概 主要内容 损失函数 Energy Loss Generalized Perceptron Loss Generalized Margin Loss Hinge Loss Log Loss LVQ2 Loss MCE Loss Square-Square Loss Square-Exponential Negative Log-Likelihood Loss Empirical Error Loss 好的损失应该满足的一些条件 条件1 条件2 条件3 LeCun Y., Chopra S…
记录一下,论文建模对话结构和时序动态来联合预测谣言立场和真实性及其代码复现. 1 引言 之前的研究发现,公众对谣言消息的立场是识别流行的谣言的关键信号,这也能表明它们的真实性.因此,对谣言的立场分类被视为谣言真实性预测的重要前置步骤,特别是在推特对话的背景下. 1.1 建模推特对话结构 一些先进的谣言立场分类方法试图模拟Twitter对话的序列属性或时序属性.在本文中,我们提出了一个基于结构属性的新视角:通过聚合相邻推文的信息来学习推文表示. 直观地看,一条推文在对话束中的邻居比更远的邻居更有信…
第四部分     推理题 1.世界上每个角落的每个人都有立场,都有背景,都有推理性,能推理出一个人语言的真意,才成就了真正的推理能力: 2.换言之,如果你能通过一个人的说话推理出其身份职业,你的推理能力更上一层楼. 一 . 临门一脚 1. “I believe in human ingenuity – that when we decide on a task to be done, no matter how daunting it may seem at the beginning, we…
选自<Reinforcement Learning: An Introduction>, version 2, 2016, Chapter2 https://webdocs.cs.ualberta.ca/~sutton/book/bookdraft2016sep.pdf 引言中是这样引出Chapter2的: One of the challenges that arise in reinforcement learning, and not in other kinds of learning…
Stephen Smith's Blog All things Sage 300… The Road to TensorFlow – Part 7: Finally Some Code leave a comment » Introduction Well after a long journey through Linux, Python, Python Libraries, the Stock Market, an Introduction to Neural Networks and tr…
请管理员移至新闻版块,谢谢! 来源:http://www.sec.gov/ 财务报表下载↓ 此文仅作参考分析. 10-K 1 goog2013123110-k.htm FORM 10-K   UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549         FORM 10-K   (Mark One)       ý ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(…
本文译自<Deep learning for understanding faces: Machines may be just as good, or better, than humans>.为了方便,文中论文索引位置保持不变,方便直接去原文中找参考文献. 近些年深度卷积神经网络的发展将各种目标检测和识别问题大大的向前推进了不少.这同时也得益于大量的标注数据集和GPU的使用,这些方面的发展使得在无限制的图片和视频中理解人脸,自动执行诸如人脸检测,姿态估计,关键点定位和人脸识别成为了可能.本…
CVPR2015 Papers震撼来袭! CVPR 2015的文章可以下载了,如果链接无法下载,可以在Google上通过搜索paper名字下载(友情提示:可以使用filetype:pdf命令). Going Deeper With ConvolutionsChristian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke…
一:译自wiki:    KeyWord:标签反馈; Survey: online machine learning is a model of induction that learns one instance at a time. The goal in on-line learning is to predict labels for instances. For example, the instances could describe the current conditions o…
About this Course AI is not only for engineers. If you want your organization to become better at using AI, this is the course to tell everyone--especially your non-technical colleagues--to take. In this course, you will learn: The meaning behind com…
CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻译 综述深度卷积神经网络架构:从基本组件到结构创新 目录 摘要    1.引言    2.CNN基本组件        2.1 卷积层        2.2 池化层        2.3 激活函数        2.4 批次归一化        2.5 Dropout        2.6 全连接层…
@http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer format than this) maintained by @karpathy NEW: This year I also embedded the (1,2-gram) tfidf vectors of all papers with t-sne and placed them in an interf…
From:  http://www.pamitc.org/cvpr15/program.php Official Program for CVPR 2015 Monday, June 8 8:30am-8:40am Ballrooms A,B,C Rooms 302,304,306 Opening Remarks from Conference Chairs The opening remarks will be made from Ballrooms A,B,C, but a live vid…
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:t…
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:t…