批标准化(Bactch Normalization,BN)是为了克服神经网络加深导致难以训练而诞生的,随着神经网络深度加深,训练起来就会越来越困难,收敛速度回很慢,常常会导致梯度弥散问题(Vanishing Gradient Problem). 统计机器学习中有一个经典的假设:Source Domain 和 Target Domain的数据分布是一致的.也就是说,训练数据和测试数据是满足相同分布的.这是通过训练数据获得的模型能够在测试集上获得好的效果的一个基本保障. Convariate Shi…
Inception V2网络中的代表是加入了BN(Batch Normalization)层,并且使用 2个 3*3卷积替代 1个5*5卷积的改进版,如下图所示: 其特点如下: 学习VGG用2个 3*3卷积代替 Inception V1中的 5*5大卷积.这样做在减少参数(3*3*2+2 –> 5*5+1)的同时可以建立更多的非线性变换,增强网络对特征的学习能力.如下图所示,2个 3*3卷积的效果与一个 5*5 卷积的效果类似: 在 Inception V1中加入BN层,以减少 Internal…
说实话,这篇paper看了很久,,到现在对里面的一些东西还不是很好的理解. 下面是我的理解,当同行看到的话,留言交流交流啊!!!!! 这篇文章的中心点:围绕着如何降低  internal covariate shift 进行的, 它的方法就是进行batch normalization. internal covariate shift 和 batch normalization 1. 什么是 internal covariate shift呢? 简单地理解为一个网络或system的输入的dirs…
1. 摘要 训练深层的神经网络非常困难,因为在训练的过程中,随着前面层数参数的改变,每层输入的分布也会随之改变.这需要我们设置较小的学习率并且谨慎地对参数进行初始化,因此训练过程比较缓慢. 作者将这种现象称之为 internal covariate shift,通过对每层的输入进行归一化来解决这个问题. 引入 BN 后,我们可以不用太在意参数的初始化,同时使用更大的学习率,而且也会有正则化的效果,在一些情况下可以不用再使用 Dropout. 2. 介绍 因为网络中每一层的输入都受到前面所有层参数…
这篇经典论文,甚至可以说是2015年最牛的一篇论文,早就有很多人解读,不需要自己着摸,但是看了论文原文Batch normalization: Accelerating deep network training by reducing internal covariate shift 和下面的这些解读之后,还有感觉有些不明白.比如, 是怎么推导出来的,我怎么就是没搞懂呢? 1.论文翻译:论文笔记-Batch Normalization 2.博客专家 黄锦池 的解读:深度学习(二十九)Batch…
ICML, 2015 S. Ioffe and C. Szegedy 解决什么问题(What) 分布不一致导致训练慢:每一层的分布会受到前层的影响,当前层分布发生变化时,后层网络需要去适应这个分布,训练时参数的变化会导致各层分布的不断变化,这个问题被定义为"internal covariate shift",由于每一层的分布不一样,就会导致训练很慢 梯度消失和梯度爆炸:深度网络中微小的参数变动引起梯度上的剧变,导致训练陷入sigmoid的饱和区 需要使用较小的学习率:大的学习率可能会导…
internal covariate shift(ics):训练深度神经网络是复杂的,因为在训练过程中,每层的输入分布会随着之前层的参数变化而发生变化.所以训练需要更小的学习速度和careful参数初始化,这将减缓训练的速度. bn的目的就是解决ics 我们知道在神经网络训练开始前,都要对输入数据做一个归一化处理,那么具体为什么需要归一化呢?归一化后有什么好处呢?原因在于神经网络学习过程本质就是为了学习数据分布,一旦训练数据与测试数据的分布不同,那么网络的泛化能力也大大降低:另外一方面,一旦每批…
TensorFlow实现与优化深度神经网络 转载请注明作者:梦里风林Github工程地址:https://github.com/ahangchen/GDLnotes欢迎star,有问题可以到Issue区讨论官方教程地址视频/字幕下载 全连接神经网络 辅助阅读:TensorFlow中文社区教程 - 英文官方教程 代码见:full_connect.py Linear Model 加载lesson 1中的数据集 将Data降维成一维,将label映射为one-hot encoding def refo…
转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 全连接神经网络 辅助阅读:TensorFlow中文社区教程 - 英文官方教程 代码见:full_connect.py Linear Model 加载lesson 1中的数据集 将Data降维成一维,将label映射为one-hot encoding def reformat(dataset, labe…
Batch Normalization导读 博客转载自:https://blog.csdn.net/malefactor/article/details/51476961 作者: 张俊林 为什么深度神经网络随着网络深度加深,训练起来越困难,收敛越来越慢?这是个在DL领域很接近本质的好问题.很多论文都是解决这个问题的,比如ReLU激活函数,再比如Residual Network,BN本质上也是解释并从某个不同的角度来解决这个问题的. |“Internal Covariate Shift”问题从论文…