题目描述 给出一个长度为 $n$ 的数列 $a$ ,求 $a_1$ 分别与 $a_1...a_n$ 的次大公约数.不存在则输出-1. 输入 第一行一个正整数 $n$ . 第二行 $n$ 个用空格隔开的正整数,第 $i$ 个为 $a_i$ . $n\le 10^5,a_i\le 10^{12}$ 输出 一行 $n$ 个用空格隔开的整数,第 $i$ 个表示 $\text{sgcd}(a_1,a_i)$ . 样例输入 412450 1 2 450 样例输出 6225 -1 1 75 题解 数论 次大公…
次大公约数就是gcd再除以其最小质因子(如果有的话).可以发现要求的sgcd 的前身gcd都是a1的约数,所以把a1质因数分解直接做就行了. #include<bits/stdc++.h> #define ll long long using namespace std; const int maxn=100005; unordered_map<ll,ll> mmp; ll gcd(ll x,ll y){ return y?gcd(y,x%y):x;} int n,c[233],n…
[UOJ#48][UR #3]核聚变反应强度(质因数分解) 题面 UOJ 题解 答案一定是\(gcd\)除掉\(gcd\)的最小质因子. 而\(gcd\)的最小值因子一定是\(a_1\)的质因子. 所以预处理出\(a_1\)的质因子,个数不会超过\(\log(a)\)个,然后就可以直接暴力了. 时间复杂度\(O(n\log(a)+\sqrt a)\) #include<iostream> #include<cstdio> #include<algorithm> usin…
[UR #3]核聚变反应强度 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/48 Description 著名核物理专家 Picks 提出了核聚变特征值这一重要概念. 核聚变特征值分别为 x 和 y 的两个原子进行核聚变,能产生数值为 sgcd(x,y) 的核聚变反应强度. 其中, sgcd(x,y) 表示 x 和 y 的次大公约数,即能同时整除 x,y 的正整数中第二大的数.如果次大公约数不存在则说明无法核…
题目大意:给你一串数$a_i$,求$sgcd(a_1,a_i)$,$sgcd(x,y)$表示$x,y$的次大公约数,若没有,则为$-1$ 题解:即求最大公约数的最大约数,把$a_1$分解质因数,求出最大公约数,在判断是否可以被整除就行了 卡点:无 C++ Code: #include <cstdio> #include <vector> #define maxn 100010 std::vector<long long> v; int n, sz; long long…
[UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i)\)的和,所以我们尝试通过反演将\(x(i)\)表达成一系列\(b(i)\)的和的形式,那么就可以解出来了. 然后一个简单的化简:\(gcd(i,j)^c\cdot lcm(i,j)^d=i^d\cdot j^d\cdot gcd(i,j)c-d\). \[ \displaystyle b_i=\…
LINK:#22. UR #1 外星人 给出n个正整数数 一个初值x x要逐个对这些数字取模 问怎样排列使得最终结果最大 使结果最大的方案数又多少种? n<=1000,x<=5000. 考虑一个排列真正的有效取模只有当 \(x\geq a_i\)时才行 所以x通过一个排列真正有效的数字必然是从大到小排列的. 求第一问 不难想到将模数从大到小排列 设f[i][j]表示到达第i个模数此时值为j是否可行. 这样dp下来我们只需要取出小于minn的那个可行值最大的即可. 考虑方案数 这样dp同样有效.…
题目链接 \(Description\) 交互库中有三个排好序的,长度分别为\(n_a,n_b,n_c\)的数组\(a,b,c\).你需要求出所有元素中第\(k\)小的数.你可以调用至多\(100\)次询问某个数组中的第几个数的函数. \(n_a,n_b,n_c\leq 10^5\). \(Solution\) 显然的做法是先枚举这个数在哪个数组中,再在三个数组中二分.这个次数是\(log^2\)的. 我们如果每次确定一些数比第\(k\)个数小,那我们可以直接将这些数删掉. (可以假设数组是无限…
题意: 给出一个排列$A$,问是否能够经过以下若干次变换变为排列$B$ 变换:若${A_i> A_i+1}$,可以${swap(A_i,A_i+1)}$ 考虑一个数字从A排列到B排列连出来的路径与其他数字是否相交,相交就表示大小关系需要判断,(类似于二维偏序)用线段树维护区间最小值即可. 权值为1,2的线分别与权值为4的线相交,而且4在它们左边,所以需要判断它们的大小关系,发现${4>1}$,${4>2}$,所以满足条件. #include<iostream> #includ…
次最大公约数 = gcd / 其中一个数质因数中最小的. gcd(42,12) = 6;    div(42) = 2*3*7   div(12) = 2^2*3 sgcd(42,12) = 6 / 2 = 3; 之前素数筛选,分解质因数总是找模板,整理后就用红书上的模板了. #include <bits/stdc++.h> using namespace std; typedef long long ll; ll gcd(ll a,ll b) { ? a : gcd(b,a%b); } ll…