UOJ 275. [清华集训2016]组合数问题 组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数.举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选择两个物品可以有 \((1,2),(1,3),(2,3)\) 这三种选择方法.根据组合数的定义,我们可以给出计算组合数$ C_m^n$的一般公式: \[ C_n^m=\frac{n!}{m!(n-m)!} \] 其中 \(n!=1×2×⋯×n\).(额外的,当 n=0n=0 时, n!=1n!=1)