[本文出自天外归云的博客园] 第一种思路,把两个数组合为一个数组然后再排序,问题又回归到冒泡和快排了,没有用到两个数组的有序性.(不好) 第二种思路,循环比较两个有序数组头位元素的大小,并把头元素放到新数组中,从老数组中删掉,直到其中一个数组长度为0.然后再把不为空的老数组中剩下的部分加到新数组的结尾.(好) 第二种思路的排序算法与测试代码如下: def merge_sort(a, b): ret = [] while len(a)>0 and len(b)>0: if a[0] <=
// ConsoleApplication10.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> #include <vector> #include <string> using namespace std; class BinarySearch { public: int getPos(vector<int> A, int n, int val) { //
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). 这道题让我们求两个有序数组的中位数,而且限制了时间复杂度为O(log (m+n)),看到这个时间复杂度,自然而然的想到了应该使用二分查找法来求解.但是这道题
Given a sorted array consisting of only integers where every element appears twice except for one element which appears once. Find this single element that appears only once. Example 1: Input: [1,1,2,3,3,4,4,8,8] Output: 2 Example 2: Input: [3,3,7,7,
package 有序数组; public class OrdArray { private long[]array; private int nElems; //初始化 public OrdArray(int max){ array = new long[max]; nElems = 0; } //返回数组中的大小 public int size(){ return nElems; } //查找的方法的实现 public int find(long searchKey){ int lowerBo
题目 There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the midian of the two sorted arrays. The overall run time complexity should be O(log(m+n)). You may assume nums1 and nums2 cannot be both empty. Example1: nums1 = [1,
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). You may assume nums1 and nums2 cannot be both empty. Example 1: nums1 = [1, 3]