本文目录: 1. 感知器 2. 感知器的训练法则 3. 梯度下降和delta法则 4. python实现 1. 感知器[1] 人工神经网络以感知器(perceptron)为基础.感知器以一个实数值向量作为输入,计算这些输入的线性组合,然后如果结果大于某个阈值,就输出1,否则输出-1(或0).更精确地,如果输入为$x_1$到$x_n$,那么感知器计算的输出为: 其中,$w_i$是实数常量,叫做权值,用来决定输入$x_i$对感知器输出的贡献率.因为仅以一个阈值来决定输出,我们有时也把这种感知器叫做硬