首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
为什么多元线性回归模型中的t检验和p值对置信区间的检验一样的
2024-11-11
多元线性回归检验t检验(P值),F检验,R方等参数的含义
做线性回归的时候,检验回归方程和各变量对因变量的解释参数很容易搞混乱,下面对这些参数进行一下说明: 1.t检验:t检验是对单个变量系数的显著性检验 一般看p值: 如果p值小于0.05表示该自变量对因变量解释性很强. 2.F检验:F检验是对整体回归方程显著性的检验,即所有变量对被解释变量的显著性检验 3.P值:P值就是t检验用于检测效果的一个衡量度,t检验值大于或者p值小于0.05就说明该变量前面的系数显著,选的这个变量是有效的. 4.R方:拟合优度检验 5.调整后的R方: 小结: t检
多元线性回归模型的特征压缩:岭回归和Lasso回归
多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大:因此减少不必要的特征,简化模型是减小方差的一个重要步骤.除了直接对特征筛选,来也可以进行特征压缩,减少某些不重要的特征系数,系数压缩趋近于0就可以认为舍弃该特征. 岭回归(Ridge Regression)和Lasso回归是在普通最小二乘线性回归的基础上加上正则项以对参数进行压缩惩罚. 首先,对于普通的最小二乘线性回归,它的代价函数是: 通过拟合系数β来使RSS最小.方法很简单,求偏导利用线性代数解方程组即可. 根据线
R语言解读多元线性回归模型
转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论.这其中可能包括了因为更好的家庭条件,所以有了更好的教育:因为在一线城市发展,所以有了更好的工作机会:所处的行业赶上了大的经济上行周期等.要想解读这些规律,是复杂的.多维度的,多元回归分析方法更适合解读生活的规律. 由于本文为非统计的专业
多元线性回归 ——模型、估计、检验与预测
一.模型假设 传统多元线性回归模型 最重要的假设的原理为: 1. 自变量和因变量之间存在多元线性关系,因变量y能够被x1,x2-.x{k}完全地线性解释:2.不能被解释的部分则为纯粹的无法观测到的误差 其它假设主要为: 1.模型线性,设定正确: 2.无多重共线性: 3.无内生性: 4.随机误差项具有条件零均值.同方差.以及无自相关: 5.随机误差项正态分布 具体见另一篇文章:回归模型的基本假设 二.估计方法 目标:估计出多元回归模型的参数 注:下文皆为矩阵表述,X为自变量矩阵(n*k维),y为因
SPSS--回归-多元线性回归模型案例解析
多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程 为: 毫无疑问,多元线性回归方程应该为: 上图中的 x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中: 代表随机误差, 其中随机误差分为:可解释的误差 和 不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义
ML之多元线性回归
转自:http://www.cnblogs.com/zgw21cn/archive/2009/01/07/1361287.html 1.多元线性回归模型 假定被解释变量与多个解释变量之间具有线性关系,是解释变量的多元线性函数,称为多元线性回归模型.即 (1.1) 其中为被解释变量,为个解释变量,为个未知参数,为随机误差项. 被解释变量的期望值与解释变量的线性方程为: (1.2) 称为多元总体线性回归方程,简称总体回归方程. 对于组观测值,其方程组形式为: (1.3) 即 其矩阵形式为 =+
sklearn中实现随机梯度下降法(多元线性回归)
sklearn中实现随机梯度下降法 随机梯度下降法是一种根据模拟退火的原理对损失函数进行最小化的一种计算方式,在sklearn中主要用于多元线性回归算法中,是一种比较高效的最优化方法,其中的梯度下降系数(即学习率eta)随着遍历过程的进行在不断地减小.另外,在运用随机梯度下降法之前需要利用sklearn的StandardScaler将数据进行标准化. #sklearn中实现随机梯度下降多元线性回归 #1-1导入相应的数据模块import numpy as npimport matplotlib.
多元线性回归公式推导及R语言实现
多元线性回归 多元线性回归模型 实际中有很多问题是一个因变量与多个自变量成线性相关,我们可以用一个多元线性回归方程来表示. 为了方便计算,我们将上式写成矩阵形式: Y = XW 假设自变量维度为N W为自变量的系数,下标0 - N X为自变量向量或矩阵,X维度为N,为了能和W0对应,X需要在第一行插入一个全是1的列. Y为因变量 那么问题就转变成,已知样本X矩阵以及对应的因变量Y的值,求出满足方程的W,一般不存在一个W是整个样本都能满足方程,毕竟现实中的样本有很多噪声.最一般的求解W的方式是最小
day-12 python实现简单线性回归和多元线性回归算法
1.问题引入 在统计学中,线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析.这种函数是一个或多个称为回归系数的模型参数的线性组合.一个带有一个自变量的线性回归方程代表一条直线.我们需要对线性回归结果进行统计分析. 例如,假设我们已知一些学生年纪和游戏时间的数据,可以建立一个回归方程,输入一个新的年纪时,预测该学生的游戏时间.自变量为学生年纪,因变量为游戏时间.当只有一个因变量时,我们称该类问题为简单线性回归.当游戏时间与学生年纪和学生性别有关
【R】多元线性回归
R中的线性回归函数比较简单,就是lm(),比较复杂的是对线性模型的诊断和调整.这里结合Statistical Learning和杜克大学的Data Analysis and Statistical Inference的章节以及<R语言实战>的OLS(Ordinary Least Square)回归模型章节来总结一下,诊断多元线性回归模型的操作分析步骤. 1.选择预测变量 因变量比较容易确定,多元回归模型中难在自变量的选择.自变量选择主要可分为向前选择(逐次加使RSS最小的自变量),向后
机器学习——Day 3 多元线性回归
写在开头 由于某些原因开始了机器学习,为了更好的理解和深入的思考(记录)所以开始写博客. 学习教程来源于github的Avik-Jain的100-Days-Of-MLCode 英文版:https://github.com/Avik-Jain/100-Days-Of-ML-Code 中文翻译版:https://github.com/MLEveryday/100-Days-Of-ML-Code 本人新手一枚,所以学习的时候遇到不懂的会经常百度,查看别人的博客现有的资料.但是由于不同的人思维和写作风格
100天搞定机器学习|Day3多元线性回归
前情回顾 [第二天100天搞定机器学习|Day2简单线性回归分析][1],我们学习了简单线性回归分析,这个模型非常简单,很容易理解.实现方式是sklearn中的LinearRegression,我们也学习了LinearRegression的四个参数,fit_intercept.normalize.copy_X.n_jobs.然后介绍了LinearRegression的几个用法,fit(X,y).predict(X).score(X,y).最后学习了matplotlib.pyplot将训练集结果和
[tensorflow] 线性回归模型实现
在这一篇博客中大概讲一下用tensorflow如何实现一个简单的线性回归模型,其中就可能涉及到一些tensorflow的基本概念和操作,然后因为我只是入门了点tensorflow,所以我只能对部分代码给出相关的tensorflow的概念. 线性回归模型的表达式如下: 其中,是权重,是偏置,和则是输入数据和对应的模型预测值. 在tensorflow中,是用图来表示计算的形式的,图中的每个节点称为一个op(即operation),每个operation获得相关张量(Tensor)后进行数值计算,每个
TensorFlow从0到1之TensorFlow实现多元线性回归(16)
在 TensorFlow 实现简单线性回归的基础上,可通过在权重和占位符的声明中稍作修改来对相同的数据进行多元线性回归. 在多元线性回归的情况下,由于每个特征具有不同的值范围,归一化变得至关重要.这里是波士顿房价数据集的多重线性回归的代码,使用 13 个输入特征. 波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/boston处获取. 多元线性回归的具体实现 导入需要的所有软件包: 因为各特征的数据范围不同,需要归一化特征数据.为此定义一个归一化函数.另外
线性回归模型(Linear Regression)及Python实现
线性回归模型(Linear Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 对于一份数据,它有两个变量,分别是Petal.Width和Sepal.Length,画出它们的散点图.我们希望可以构建一个函数去预测Sepal.Length,当我们输入Petal.Width时,可以返回一个预测的Sepal.Length.从散点图可以发现,可以用一条直线去拟合,这时我们可以构建一元线性回归模型:hθ(x) = θ0 + θ1x1 (x1= Pe
TensorFlow多元线性回归实现
多元线性回归的具体实现 导入需要的所有软件包: 因为各特征的数据范围不同,需要归一化特征数据.为此定义一个归一化函数.另外,这里添加一个额外的固定输入值将权重和偏置结合起来.为此定义函数 append_bias_reshape().该技巧有时可有效简化编程: 现在使用 TensorFlow contrib 数据集加载波士顿房价数据集,并将其划分为 X_train 和 Y_train.注意到 X_train 包含所需要的特征.可以选择在这里对数据进行归一化处理,也可以添加偏置并对网络数据重
t检验中的t值和p值是什么关系_t检验和p值的关系
t检验中的t值和p值是什么关系_t检验和p值的关系 t检验中通过样本均值 总体均值 样本标准差 样本量 可以计算出一个t值,这个t值和p值有什么关系? 根据界值表又会查出一个数,这个数和t值比较,得出大小,判断是否接受原假设.感觉p值一直都没有什么作用? 解答:在进行t检验时,会计算出一个t值,而在选定显著性水平后,可以找到相比较的t值,两者可以比较,判断显著性.p值代表的是不接受原假设的最小的显著性水平,可以与选定的显著性水平直接比较.例如取5%的显著性水平,如果p值大于5%,就接受原假设,否
R 语言中的多元线性回归
示例 sessionInfo() # 查询版本及系统和库等信息 # 工作目录设置 getwd() path <- "E:/RSpace" setwd(path) rm(list=ls()) # 清空内存中的变量 # state.x77 # 展示基础安装中的 women 数据集 str(state.x77) # 查看 state.x77 的数据结构 # 查看数据集 state.x77 的相关属性 attributes(state.x77) typeof(state.x77) # 数
【TensorFlow篇】--Tensorflow框架初始,实现机器学习中多元线性回归
一.前述 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程.TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统. 二.相关概念和安装 TensorFlow中的计算可以表示为一个有向图(DirectedGraph)或者称计算图(ComputationGraph)其中每一
R语言解读一元线性回归模型
转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体重,普遍来看越高的人体重也越重.还有一些可能存在相关性的事件,比如知识水平越高的人,收入水平越高:市场化的国家经济越好,则货币越强势,反而全球经济危机,黄金等避险资产越走强. 如果我们要研究这些事件,找到不同变量之间的关系,我们就会用到回归分析.一元线性回归分析是处理两个变量之间关系的最简单模型,是
热门专题
如何让子组件显示在最上层
点击小方块不影响父元素点击事件
laravel migration添加字段
docker sysctl环境变量
element 的submit重置无效
latex 一个单元格的内容分行显示
pytorch 和 tensorflow的数据类型分别是什么
> CSDN中怎么变颜色
eclipse可视化界面怎么用
centos自定义开机自启服务
Creo Parametric 5.0.4.0安装方法
eclipse跑起来的mav
oracle的ID雪花用什么类型
mvn test 跳过download
java 环境变量 file.encoding
visual studio 智能提示自定义文本
MyISAM全文索引是倒排索引吗
vue3 etup语法糖
matlab通过遗传算法求解最优值
命令框输入Java_version提示找不到或没有