首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
为什么R语言矩阵class的时候会出现array
2024-11-04
R语言学习笔记:矩阵与数组(array)
元素可以保存在多个维度的对象中,数组存储的是多维数据元素,矩阵的是数组的特殊情况,它具有两维. 创建数组的几种方法. 1. > m<-c(45,23,66,77,33,44,56,12,78,23) > dim(m)<-c(2,5) > m [,1] [,2] [,3] [,4] [,5] [1,] 45 66 33 56 78 [2,] 23 77 44 12 23 2. > m<-matrix(c(45,23,
R语言矩阵matrix函数
矩阵是元素布置成二维矩形布局的R对象. 它们包含相同原子类型的元素.尽管我们可以创建只包含字符或只逻辑值的矩阵,但是它们没有多大用处.我们使用的是在数学计算中含有数字元素矩阵. 使用 matrix()函数创建一个矩阵. 语法 R语言中创建矩阵的基本语法是: matrix(data, nrow, ncol, byrow, dimnames) 以下是所使用的参数的说明: data - 是这成为矩阵的数据元素输入向量. nrow - 是要创建的行数. ncol - 要被创建的列的数目. byrow -
R语言矩阵维度“消失”的问题
矩阵(matrix)是R语言中很基础的一种数据结构,也是R语言使用者经常使用的一种数据结构.矩阵的维度一般为二维(m*n). R语言中矩阵的操作是非常简单易懂的,但是在对R语言做矩阵操作时,有个地方需要特别注意.下面我们通过一个例子说明. 首先,我们创建一个用于测试的矩阵. test1 <- matrix(data = c(1:6), nrow = 3, ncol = 2, dimnames = list(c("row1", "row2", "row
R语言矩阵
矩阵是元素布置成二维矩形布局的R对象. 它们包含相同原子类型的元素. R创建矩阵的语法: matrix(data, nrow, ncol, byrow, dimnames) 参数说明: data - 成为矩阵的数据元素输入向量. nrow - 是要创建的行数. ncol - 要被创建的列数. byrow - 是一个合乎逻辑.若为True,则输入向量元素按行安排. dimnames - 是分配给行和列名称. Example > # Elements are arranged sequential
R语言矩阵相关性计算及其可视化?
目录 1. 矩阵相关性计算方法 base::cor/cor.test psych::corr.test Hmisc::rcorr 其他工具 2. 相关性矩阵转化为两两相关 3. 可视化 corrplot gplots::heatmap.2 pheatmap 1. 矩阵相关性计算方法 base::cor/cor.test R基础函数cor或cor.test都可计算相关性系数,但cor可直接计算矩阵的相关性,而cor.test不可. 两者计算非矩阵时,cor仅得到相关系数,而cor.test还能得到
R语言矩阵栅格显示矩阵颜色显示
效果如下:
R语言基础:数组&列表&向量&矩阵&因子&数据框
R语言基础:数组和列表 数组(array) 一维数据是向量,二维数据是矩阵,数组是向量和矩阵的直接推广,是由三维或三维以上的数据构成的. 数组函数是array(),语法是:array(dadta, dim),其中data必须是同一类型的数据,dim是各维的长度组成的向量. 1.产生一个三维和四维数组. 例1:xx <- array(1:24, c(3, 4, 2)) #一个三维数组 例2:yy <- array(1:36, c(2, 3, 3, 2)) #一个四维数组 2.dim()函数可
R语言编程艺术# 矩阵(matrix)和数组(array)
矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一般的对象,矩阵是数组的一个特殊情形.数组可以是多维的.例如:一个三维数组可以包含行.列和层(layer),而一个矩阵只有行和列两个维度 1.创建矩阵 矩阵的行和列的下标都是从1开始,如:矩阵a左上角的元素记作a[1,1].矩阵在R中是按列存储的,也就是说先存储第一列,再存储第二列,以此类推. > y
R语言笔记1--向量、数组、矩阵、数据框、列表
注释:R语言是区分大小写的 1.向量 R语言中可以将各种向量赋值为一个变量,这种赋值操作符就是等号“=”,也可以使用“<-”. 1)产生向量 (1)函数c() 例如:x1=c(2,4,6,8,0) 表示数列 (2)例如: 向量a:2到60的元素都乘以2再加1 a[5]:显示向量a的第5个元素 a[-5]:除去向量a的第5个元素,显示其它元素 a[1:5]:显示第1到第5个元素 a[-(1:5)]:除去第1到第5个元素,显示其余的元素 a[c(2,4,7)]:显示第2,第4,第7个元素 a[
R语言编程艺术#02#矩阵(matrix)和数组(array)
矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一般的对象,矩阵是数组的一个特殊情形.数组可以是多维的.例如:一个三维数组可以包含行.列和层(layer),而一个矩阵只有行和列两个维度 1.创建矩阵 矩阵的行和列的下标都是从1开始,如:矩阵a左上角的元素记作a[1,1].矩阵在R中是按列存储的,也就是说先存储第一列,再存储第二列,以此类推. > y
使用R语言-为矩阵(表格)的行列命名
转自:http://www.dataguru.cn/article-2217-1.html R语言中经常进行矩阵(表格)数据的处理,在纷繁复杂的数据中,为其行列定义一个名字变得尤为重要.在处理巨量数据时,批量命名将是一个不错的操作方法,下面我们通过一些具体的例子演示怎样在R语言中为矩阵的行列进行批量的命名. > x <- matrix(1:12,nrow=3,byrow=T) 初始化一个矩阵,先行后列的顺序进行填充 > x 查看矩阵x [,1] [,2] [,3] [,4] [1,]
R语言学习——向量,矩阵
在R中,基本的数据结构有:向量,矩阵,数组,数据框,列表,因子,函数等. 向量:一系列同类型的有序元素构成. 向量是一维结构. 向量是R最简单的数据结构,在R中没有标量. 标量被看成1个元素的向量. 向量元素必须是同类型的. 由于向量是最简单的数据结构,因此本章中以向量为例子来解释各个概念. 矩阵:二维的同类型元素的集合. 矩阵由函数matrix创建. 矩阵需要输入行数,列数. 矩阵是二维的,引用元素可通过双下标做索引. 矩阵在物理实现时,是向量附加行列数属性来实现的,因此也可以通过向量的方式引
用R语言提取数据框中日期对应年份(列表转矩阵)
用R语言提取数据框中日期对应年份(列表转矩阵) 在数据处理中常会遇到要对数据框中的时间做聚类处理,如从"%m/%d/%Y"中提取年份. 对应操作为:拆分成列表——列表转矩阵——利用索引从矩阵中提取第一列—— year<-strsplit(case_data2$Date,split = "-") # strsplit函数将数据拆分成列表 year1<-]# 将列表转换为矩阵,提取第一列——年份 case_data2$year1<-year1 其他办法
<R语言编程艺术>的一个错误以及矩阵相加
R语言编程艺术讲矩阵这节时,举了个随机噪声模糊罗斯福总统画像的例子.但是里面似乎有个错误,例子本意是区域外的值保持不变,而选定区域的值加一个随机值,但是实际情况是两个行列不相等的矩阵相加,会报错,如果我有看错,请大家告诉我. 函数调用和参数输入: 然后是函数的编写: R中不同长高的矩阵是不能相加的,即使1X1,不会出现向量补齐的情况,下面举个极端的例子: > a<-matrix(1,1,1)> b<-matrix(1:2,2,1)> a [,1][1,] 1> b [,
R语言常用的矩阵操作
R语言是一门非常方便的数据分析语言,它内置了许多处理矩阵的方法.下面列出一些常用的矩阵操作方法示例. 矩阵的生成 > mat <- matrix(:, ncol = , nrow = , byrow=TRUE, dimnames=list(c(paste(:, sep = :, sep = ".")))) > mat y. y. y. y. x. x. x. x. 16# 矩阵的行列名还可以使用rownames或者colnames进行修改 > rownames(
如何在R语言中使用Logistic回归模型
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概
R语言实战(三)基本图形与基本统计分析
本文对应<R语言实战>第6章:基本图形:第7章:基本统计分析 ================================================================================================================================================== 本章讨论的图形,主要用于分析数据前,对数据的初步掌握.想要对数据有一个初步的印象,最好的方式就是观察它,也就是将数据可视化.在这个过程中,我们
R语言实战(二)数据管理
本文对应<R语言实战>第4章:基本数据管理:第5章:高级数据管理 创建新变量 #建议采用transform()函数 mydata <- transform(mydata, sumx = x1 + x2, meanx = (x1 + x2)/2) 重编码 < 小于 <= 小于或等于 > 大于 >= 大于或等于 == 严格等于(比较浮点类型时慎用,易误判) != 不等于 !x 非x x | y x或y x & y x和y isTRUE(x) x是否为TRUE
R语言实战(一)介绍、数据集与图形初阶
本文对应<R语言实战>前3章,因为里面大部分内容已经比较熟悉,所以在这里只是起一个索引的作用. 第1章 R语言介绍 获取帮助函数 help(), ? 查看函数帮助 example() 使用函数示例 vignette() 列出vignette文档 vignette("svmdoc") 打开对应文档 管理工作空间 getwd() 显示当前工作目录 setwd("mydirectory") 修改当前工作目录为mydirectory rm(objec
从零开始系列-R语言基础学习笔记之二 数据结构(二)
在上一篇中我们一起学习了R语言的数据结构第一部分:向量.数组和矩阵,这次我们开始学习R语言的数据结构第二部分:数据框.因子和列表. 一.数据框 类似于二维数组,但不同的列可以有不同的数据类型(每一列内的数据类型应当一致).创建数据框使用的关键字是data.frame,用法是: data.frame(..., row.names = NULL, check.rows = FALSE, check.names = TRUE, fix.empty.names = TRUE, stringsAsFact
R语言介绍
R语言简介 R语言是一种为统计计算和图形显示而设计的语言环境,是贝尔实验室(Bell Laboratories)的Rick Becker.John Chambers和Allan Wilks开发的S语言的一种实现,提供了一系列统计和图形显示工具.S语言也是目前比较流行的统计软件S-PLUS的基础.http://hovertree.com/ R语言的创始人Ross Ihaka和Robert Gentleman,由于这两位“R之父”的名字都是以R开头,所以就称之为R语言. R语言是一组数据操作,计算和
热门专题
sql xml 经纬度范围判断
openvnpserver 用户名密码连接
IActionResult 转JsonResult
win32 打印机api
python数据库绘制图表
vs 输出文字到edit
springsecurity权限变更怎么处理
vue.config.js 文件和webpack
thrift 与 netty
libvirt usb重定向过滤的顺序
如何将root权限的文件夹降低
element顶部加载条
51单片机interrupt 7
ila的trigger position
tensorflow nn模块
java调用cmd执行命令
popwindow和textview焦点冲突
wrk 使用lua脚本最大Header
plsql禁用触发器
群晖硬盘格式btrfs 还是 ext4