背景 假设现在有个商品点击预测的任务,有用户端特征性别.年龄.消费力等,商品侧特征价格.销量等,样本为0或者1,现在对特征进行one hot encode,如性别特征用二维表示,男为[1,0],女为[0,1],其他特征相同处理后拼接起来一共有n维,n是所有特征的类别数之和. Logistic Regression(LR)与二阶 线性模型,y = sigmoid(w, x),w有n维,优点是简单易解释,缺点是太简单,无法挖掘特征组合的情况,如男性+游戏类商品可能是个很强特征.为了弥补这个缺点往往需