系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 3.2 交叉熵损失函数 交叉熵(Cross Entropy)是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息.在信息论中,交叉熵是表示两个概率分布 \(p,q\) 的差异,其中 \(p\) 表示真实分布,\(q\) 表示非真实分布,那么\(H(p,q)\)就称为交叉熵: \[H(p,q)=\sum_i p_i \cdot \l