问题是这样,如果我们知道两个向量v1和v2,计算从v1转到v2的旋转矩阵和四元数,由于旋转矩阵和四元数可以互转,所以我们先计算四元数. 我们可以认为v1绕着向量u旋转θ角度到v2,u垂直于v1-v2平面. 四元数q可以表示为cos(θ/2)+sin(θ/2)u,即:q0=cos(θ/2),q1=sin(θ/2)u.x,q2=sin(θ/2)u.y,q3=sin(θ/2)u.z 所以我们求出u和θ/2即可,u等于v1与v2的叉积,不要忘了单位化:θ/2用向量夹角公式就能求. ma
CH4 带有约束条件的最小二乘法 重点提炼 提出带有约束条件的最小二乘学习法的缘故: 左图中可见:一般的最小二乘学习法有个缺点----对于包含噪声的学习过程经常会过拟合 右图:有了空间约束之后,学习到的曲线能避免过拟合,得到想要的学习结果(x-y关系). 带有约束条件的最小二乘学习法具体方法 1.部分空间约束的最小二乘学习法 ① 公式 在上面普通最小二乘学习法公式基础上添加一个约束条件: ② 对线性模型进行带有约束条件的最小二乘学习,得到参数theta ③ 优点:只用了参数空间的一部分
首先说说自相关和互相关的概念. 自相关 在统计学中的定义,自相关函数就是将一个有序的随机变量系列与其自身作比较.每个不存在相位差的系列,都与其都与其自身相似,即在此情况下,自相关函数值最大. 在信号分析当中通常将自相关函数称之为自协方差方程. 用来描述信息在不同时间的,信息函数值的相关性. 互相关 在统计学中,互相关有时用来表示两个随机矢量 X 和 Y 之间的协方差 cov(X, Y),以与矢量 X 的“协方差”概念相区分,矢量 X 的“协方差”是 X 的各标量成分之间的协方差矩阵.
MATLAB中求矩阵非零元的坐标: 方法1: index=find(a); [i,j]=ind2sub(size(a),index); disp([i,j]) 方法2: [i,j]=find(a>0|a<0) %列出所有非零元的坐标 [i,j]=find(a==k) %找出等于k值的矩阵元素的坐标 所用函数简介: IND2SUB Multiple subscripts from linear index. IND2SUB is used to determine the equivalent