sklearn中的SVM以及使用多项式特征以及核函数 sklearn中的SVM的使用 SVM的理论部分 需要注意的是,使用SVM算法,和KNN算法一样,都是需要做数据标准化的处理才可以,因为不同尺度的数据在其中的话,会严重影响SVM的最终结果 (在notebook中) 加载好需要的包,使用鸢尾花数据集,为了方便可视化,只取前两个特征,然后将其绘制出来 import numpy as np import matplotlib.pyplot as plt from sklearn import da
在前面三篇教程中的几种角检测方法,比如harris角检测,都是旋转无关的,即使我们转动图像,依然能检测出角的位置,但是图像缩放后,harris角检测可能会失效,比如下面的图像,图像放大之前可以检测出为harris角,但是图像放大后,则变成了边,不能检测出角了.所以,harris角是缩放相关的. 在paper Distinctive Image Features from Scale-Invariant Keypoints中,D.Lowe提出了SIFT算法,该算法是缩 放无关的