首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
什么时候使用pcoa和pca
2024-09-07
pca , nmds , pcoa 图添加分组的椭圆
对于pca , nmds, pcoa 这些排序分析来说,我们可以从图中看出样本的排列规则,比如分成了几组. 为例样本分组更加的直观,我们可以根据实验设计时的样本分组情况,对属于同一个group的样本添加1个椭圆或者其他多边形. 新版本的ggplot2 中提供了stat_ellipse 这个stat, 可以方便的实现上面的效果. 代码示例: ggplot(faithful, aes(waiting, eruptions, color = eruptions > 3)) + geom_point()
PCA和PCoA
讲解很详细:http://blog.genesino.com/2016/10/PCA/ PCA分析一般流程: 中心化(centering, 均值中心化,或者中位数中心化),定标(scale,如果数据没有定标,则原始数据中方差大的变量对主成分的贡献会很大.) 根据前面的描述,原始变量的协方差矩阵表示原始变量自身的方差(协方差矩阵的主对角线位置)和原始变量之间的相关程度(非主对角线位置).如果从这些数据中筛选主成分,则要选择方差大(主对角线值大),且与其它已选变量之间相关性最小的变量(非主对角线值很
因子分析和PCA总结
因子分析和PCA 定义 因子分析就是数据降维工具.从一组相关变量中删除冗余或重复,把相关的变量放在一个因子中,实在不相关的因子有可能被删掉.用一组较小的“派生”变量表示相关变量,这个派生就是新的因子.形成彼此相对独立的因素,就是说新的因子彼此之间正交. 应用 筛选变量. 步骤 3.1计算所有变量的相关矩阵 3.2要素提取,仅在此处需要使用PCA 3.3要素轮换 3.4就基本因素的数量作出最后决定 3.1计算所有变量的相关矩阵 构建数据矩阵,该数据矩阵是相关矩阵(矩阵里面全是相关系数),PCA
PCoA|NMDS|STRESS|RDA |RA|Unimodal|CCA|Generalized Joint Attribute Modeling
PCoA:主坐标轴分析 数值型变量使用各种距离公式,而分类变量看是否相同,比如, Aabbcc || Aaffff 其中,两个相同,4个不同,一组6个,则(6+6-2*2)=8. PC0A与PCA区别在于PCoA有多种计算距离公式. NMDS: 两者之差比两者之和,得到similarity得分,按分排序.所以,S是similarity,值越大越相似. 对差距不敏感只有排序,多一个物种或者类群差距都不大,稳健性. STRESS来衡量转换的好坏,低于0.05比较好. RDA or RA用矩阵解释矩阵
用scikit-learn学习主成分分析(PCA)
在主成分分析(PCA)原理总结中,我们对主成分分析(以下简称PCA)的原理做了总结,下面我们就总结下如何使用scikit-learn工具来进行PCA降维. 1. scikit-learn PCA类介绍 在scikit-learn中,与PCA相关的类都在sklearn.decomposition包中.最常用的PCA类就是sklearn.decomposition.PCA,我们下面主要也会讲解基于这个类的使用的方法. 除了PCA类以外,最常用的PCA相关类还有KernelPCA类,在原理篇我们也讲到
主成分分析(PCA)原理总结
主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结. 1. PCA的思想 PCA顾名思义,就是找出数据里最主要的方面,用数据里最主要的方面来代替原始数据.具体的,假如我们的数据集是n维的,共有m个数据$(x^{(1)},x^{(2)},...,x^{(m)})$.我们希望将这m个数据的维度从n维降到n'维
机器学习基础与实践(三)----数据降维之PCA
写在前面:本来这篇应该是上周四更新,但是上周四写了一篇深度学习的反向传播法的过程,就推迟更新了.本来想参考PRML来写,但是发现里面涉及到比较多的数学知识,写出来可能不好理解,我决定还是用最通俗的方法解释PCA,并举一个实例一步步计算,然后再进行数学推导,最后再介绍一些变种以及相应的程序.(数学推导及变种下次再写好了) 正文: 在数据处理中,经常会遇到特征维度比样本数量多得多的情况,如果拿到实际工程中去跑,效果不一定好.一是因为冗余的特征会带来一些噪音,影响计算的结果:二是因为无关的特征会加大计
数据降维技术(1)—PCA的数据原理
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在
深度学习笔记——PCA原理与数学推倒详解
PCA目的:这里举个例子,如果假设我有m个点,{x(1),...,x(m)},那么我要将它们存在我的内存中,或者要对着m个点进行一次机器学习,但是这m个点的维度太大了,如果要进行机器学习的话参数太多,或者说我要存在内存中会占用我的较大内存,那么我就需要对这些个点想一个办法来降低它们的维度,或者说,如果把这些点的每一个维度看成是一个特征的话,我就要减少一些特征来减少我的内存或者是减少我的训练参数.但是要减少特征或者说是减少维度,那么肯定要损失一些信息量.这就要求我在减少特征或者维度的过程当中呢,尽
PCA、ZCA白化
白化是一种重要的预处理过程,其目的就是降低输入数据的冗余性,使得经过白化处理的输入数据具有如下性质:(i)特征之间相关性较低:(ii)所有特征具有相同的方差. 白化又分为PCA白化和ZCA白化,在数据预处理阶段通常会使用PCA白化进行去相关操作(降低冗余,降维),而ZCA则只是去相关,没有降维. 区别如下: PCA白化ZCA白化都降低了特征之间相关性较低,同时使得所有特征具有相同的方差. ,ZCA白化只需保证方差相等. 2. PCA白化可进行降维也可以去相关性,而ZCA白化主要用于去相关性另
PCA 协方差矩阵特征向量的计算
人脸识别中矩阵的维数n>>样本个数m. 计算矩阵A的主成分,根据PCA的原理,就是计算A的协方差矩阵A'A的特征值和特征向量,但是A'A有可能比较大,所以根据A'A的大小,可以计算AA'或者A'A的特征值,原矩阵和其转置矩阵的特征值是一样的,只是特征向量不一样. 假如我们的数据按行存放,A是m*n的矩阵,n>>m,m是样本个数,n是维数,则协方差矩阵应该是A'A,A'A是n*n维的一个矩阵,这个矩阵非常大,不利于求特征值和特征向量,所以先求AA'的特征值,它是一个m*m维的矩阵.
【统计学习】主成分分析PCA(Princple Component Analysis)从原理到实现
[引言]--PCA降维的作用 面对海量的.多维(可能有成百上千维)的数据,我们应该如何高效去除某些维度间相关的信息,保留对我们"有用"的信息,这是个问题. PCA给出了我们一种解决方案和思路. PCA给我的第一印象就是去相关,这和数据(图像.语音)压缩的想法是一致的.当然,PCA像是一种有损的压缩算法.但是不要紧,去除掉的信息也许是噪声呢,而且损失的信息不是"主要成分". PCA 降维的概念不是简单的去除原特征空间的某些维度,而是找出原特征空间的新的正交基,并且这个
主成分分析 (PCA) 与其高维度下python实现(简单人脸识别)
Introduction 主成分分析(Principal Components Analysis)是一种对特征进行降维的方法.由于观测指标间存在相关性,将导致信息的重叠与低效,我们倾向于用少量的.尽可能多能反映原特征的新特征来替代他们,主成分分析因此产生.主成分分析可以看成是高维空间通过旋转坐标系找到最佳投影(几何上),生成新维度,其中新坐标轴每一个维度都是原维度的线性组合\(\theta'X\)(数学上),满足: 新维度特征之间的相关性尽可能小 参数空间\(\theta\)有界 方差尽可能大,
PCA与LDA的区别与联系
由于涉及内容较多,这里转载别人的博客: http://blog.csdn.net/sunmenggmail/article/details/8071502 其实主要在于:PCA与LDA的变换矩阵不同,由于他们在处理信息目标上存在差异: PCA:主要使得原向量在其上的投影最大: LDA:主要使得通过投影后的向量最具区分性. 原理在上面的博客里比较全面了.
主成分分析(principal components analysis, PCA)
原理 计算方法 主要性质 有关统计量 主成分个数的选取 ------------------------------------------------------------------------------------------------------------------------ http://my.oschina.net/gujianhan/blog/225241 ---------------------------------------------------------
运用PCA进行降维的好处
运用PCA对高维数据进行降维,有一下几个特点: (1)数据从高维空间降到低维,因为求方差的缘故,相似的特征会被合并掉,因此数据会缩减,特征的个数会减小,这有利于防止过拟合现象的出现.但PCA并不是一种好的防止过拟合的方法,在防止过拟合的时候,最好是对数据进行正则化: (2)使用降维的方法,使算法的运行速度加快: (3)减少用来存储数据的内存空间: (4)从x(i)到z(i)的映射过程中,对训练数据进行降维,然后对测试数据或验证数据进行降维:
机器学习笔记----四大降维方法之PCA(内带python及matlab实现)
大家看了之后,可以点一波关注或者推荐一下,以后我也会尽心尽力地写出好的文章和大家分享. 本文先导:在我们平时看NBA的时候,可能我们只关心球员是否能把球打进,而不太关心这个球的颜色,品牌,只要有3D效果,看到球员扣篮的动作就可以了,比如下图: 如果我们直接对篮球照片进行几百万像素的处理,会有几千维甚至几万维的数据要计算,计算量很大.而往往我们只需要大概勾勒出篮球的大概形状就可以描述问题,所以必须对此类数据降维,这样会使处理数据更加轻松.这个在人脸识别中必须要降维,因为我们在做特征提取的时候几万维
PCA本质和SVD
一.一些概念 线性相关:其中一个向量可以由其他向量线性表出. 线性无关:其中一个向量不可以由其他向量线性表出,或者另一种说法是找不到一个X不等于0,能够使得AX=0.如果对于一个矩阵A来说它的列是线性无关的,则AX=0,只有0解,此时矩阵A可逆. 秩:线性无关向量个数. 基: 特征向量:向量X经过矩阵A旋转后,与原来的X共线,.即为特征值,表示向量的伸缩.如果把矩阵看成进行线性变化的矩阵(旋转,拉伸),那么特征向量就是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已.反
深度学习入门教程UFLDL学习实验笔记三:主成分分析PCA与白化whitening
主成分分析与白化是在做深度学习训练时最常见的两种预处理的方法,主成分分析是一种我们用的很多的降维的一种手段,通过PCA降维,我们能够有效的降低数据的维度,加快运算速度.而白化就是为了使得每个特征能有同样的方差,降低相邻像素的相关性. 主成分分析PCA PCA算法可以将输入向量转换为一个维数低很多的近似向量.我们在这里首先用2D的数据进行试验,其数据集可以在UFLDL网站的相应页面http://ufldl.stanford.edu/wiki/index.php/Exercise:PCA_in_2D
群体结构图形三剑客——PCA图
重测序便宜了,群体的测序和分析也多了起来.群体结构分析,是重测序最常见的分析内容.群体结构分析应用十分广泛,首先其本身是群体进化关系分析里面最基础的分析内容,其次在进行GWAS分析的时候,本身也需要使用PCA或structure分析的结果作为协变量,来校正群体结构对关联分析带来的假阳性.我们之所以冠以 "群体结构三剑客"的称呼,那是因为这三张图(或者说三项分析)几乎总是在一篇文章中一起出现.虽然这三张图常常一起出现,但它们能够解释的生物学问题,以及绘制的方法都是有所不同的,所以我们还是
热门专题
centos7 禁用cpu频率调整
Angular Django前后端分离实战项目开发教程
docker安装neo4j
给定一组非负整数,重新排列他们的顺序javascript
sqllite 可变长度
ArcGIS License安装包
东邪西毒粤语100分钟
Layui数据表格动态cols(字段)动态变化
scrapy 与 gre
账号已使用 从可用列表中删除
Springboot 初始化 静态 service
QDialog QGraphicsScene关系
bulk_create 嵌套使用
win10 设置风格窗体
android 面试 加载大图不oom
unity中拖拽3d物体
哪里需要加@Autowired
ipsec 协议软件实现
labview错误簇在哪
CSRedisCore 订阅 发布