Do Transformers Really Perform Badfor Graph Representation? microsoft/Graphormer: This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?". (github.com) 1 Introduction 作者们发现关键问题在于如何补回Transformer模型的自注
The key mechanism of transformer-based models is cross-attentions, which implicitly form graphs over tokens and act as diffusion operators to facilitate information propagation through the graph for question-answering that requires some reasoning ove
Recently Kaggle hosted a competition on the CIFAR-10 dataset. The CIFAR-10 dataset consists of 60k 32x32 colour images in 10 classes. This dataset was collected by AlexKrizhevsky, Vinod Nair, and Geoffrey Hinton. Many contestants used convolutional n
About this Course This course will teach you how to build convolutional neural networks and apply it to image data. Thanks to deep learning, computer vision is working far better than just two years ago, and this is enabling numerous exciting applica
本文是针对谷歌Transformer模型的解读,根据我自己的理解顺序记录的. 另外,针对Kyubyong实现的tensorflow代码进行解读,代码地址https://github.com/Kyubyong/transformer 这里不会详细描述Transformer的实现机理,如果有不了解Transformer的可以先阅读文章<Attention is all you need>,以及我列出的一些参考博客,都是不错的解读. Layer Normalization 首先是Layer Norm
ICLR 2022: Scene Transformer: A unified architecture for predicting future trajectories of multiple agents Type: ICLR Year: 2022 组织: waymo 参考与前言 openreivew https://openreview.net/forum?id=Wm3EA5OlHsG pdf Scene Transformer: A unified architecture for
13 A Data-Driven Graph Generative Model for Temporal Interaction Networks link:https://scholar.google.com.sg/scholar_url?url=https://par.nsf.gov/servlets/purl/10272483&hl=zh-TW&sa=X&ei=HCmOYrzrJ8nFywSFg47QCw&scisig=AAGBfm08x5PFAPPWh_nl6CoU
KLMo:建模细粒度关系的知识图增强预训练语言模型 (KLMo: Knowledge Graph Enhanced Pretrained Language Model with Fine-Grained Relationships) 论文地址:https://aclanthology.org/2021.findings-emnlp.384.pdf 摘要 知识图谱(KG)中实体之间的交互作用为语言表征学习提供了丰富的知识.然而,现有的知识增强型预训练语言模型(PLMS)只关注实体信息,而忽略了实体
TimeWall is a graph databases github It be used to apply mathematic model and social network with graph algorithms and so on... Features: 1. C/S structure 2. compute in memory 3. dynamic add and remove nodes on the graph db 4. with lots of algorithms
Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems.[J]. Nature Reviews Neuroscience, 2009, 10(3):186-198. Graph measures A graph G consisting of a set of
Destroying The Graph Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8198 Accepted: 2635 Special Judge Description Alice and Bob play the following game. First, Alice draws some directed graph with N vertices and M arcs. After that B