斐波那契级数除以N会出现循环,此周期称为皮萨诺周期. 下面给出证明 必然会出现循环 这是基于下面事实: 1. R(n+2)=F(n+2) mod P=(F(n+1)+F(n)) mod P=(F(n+1) mod p +F(n) modp) mod p 2. 斐波那契数列的最大公约数定理:gcd(F(m),F(n))=F(gcd(m,n)) 最大公约数定理表明如果F(k)能被N整除,则F(ik)也能被N整除,这就表明了斐波那契数列所含因子的周期性,下面列举: 因子:2,3,4,5, 6,7,8,