背景与原理: 朴素贝叶斯算法是机器学习领域最经典的算法之一,仍然是用来解决分类问题的. 那么对于分类问题,我们的模型始终是:用$m$组数据,每条数据形如$(x_{1},...,x_{n},y)$,表示数据共有$n$个特征维度,而$y$表示该数据所属的类别,不妨设有$k$个取值$C_{1},...,C_{k}$ 我们想一想,当我们谈论分类问题的时候,我们究竟在谈论什么? 从一个角度来理解,我们实际上是在研究:当给定了$X=x$的条件下,求概率$P(y=C_{i})$,而我们对分类的预测实际上就是使