在之前的学习中,主要基于充分统计量给出点估计,并且注重于点估计的无偏性与相合性.然而,仅有这两个性质是不足的,无偏性只能保证统计量的均值与待估参数一致,却无法控制统计量可能偏离待估参数的程度:相合性只能在大样本下保证统计量到均值的收敛性,但却对小样本情形束手无策.今天我们将注重于统计量的有效性,即无偏统计量的抽样分布的方差.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Part 1:一致最小方差无偏估计 Part 2:改进无偏估计量 Part 3:零无偏估
今天的主角是指数分布,由此导出\(\Gamma\)分布,同样,读者应尝试一边阅读,一边独立推导出本文的结论.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Part 1:指数分布的参数估计 Part 2:独立同分布指数分布之和与$\Gamma$分布 Part 3:$\Gamma$分布与其他分布 Part 1:指数分布的参数估计 指数分布是单参数分布族,总体\(X\sim E(\lambda)\)有时也记作\(\mathrm{Exp}(\lambda)\),此
接下来我们就对除了正态分布以外的常用参数分布族进行参数估计,具体对连续型分布有指数分布.均匀分布,对离散型分布有二项分布.泊松分布几何分布. 今天的主要内容是均匀分布的参数估计,内容比较简单,读者应尝试一边阅读,一边独立推导出本文的结论.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Part 1:均匀分布的参数估计 Part 2:次序统计量 Part 3:均匀分布次序统计量与$\beta$分布 Part 1:均匀分布的参数估计 一般说来,离散分布似乎比连续
在上一篇文章的最后,我们指出,参数估计是不可能穷尽讨论的,要想对各种各样的参数作出估计,就需要一定的参数估计方法.今天我们将讨论常用的点估计方法:矩估计.极大似然估计,它们各有优劣,但都很重要.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! Part 1:矩法估计 矩法估计的重点就在于"矩"字,我们知道矩是概率分布的一种数字特征,可以分为原点矩和中心矩两种.对于随机变量\(X\)而言,其\(k\)阶原点矩和\(k\)阶中心矩为 \[a_k=\mathbb
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine Learning>一书中的开头有讲到:“概率论.决策论.信息论3个重要工具贯穿着<PRML>整本书,虽然看起来令人生畏…”.确实如此,其实这3大理论在机器学习的每一种技法中,或多或少都会出现其身影(不局限在概率模型). <PRML>书中原话:”This chapter also