回到随机变量传输问题,假设传输中我们不知道具体 分布情况(unknown),我们用一个已知的分布 ,来模拟它,那么在这种情况下如果我们利用 尽可能高效的编码,那么我们平均需要多少额外的信息量来描述x呢.这称为相对熵,或者kl divergence. 利用凸函数的不等式性质(也利用了离散求和推广到连续积分)可以证明 因此KL表征了两个分布之间的关系,a measure of dissimilariy of p and q表示两个分布不相同的程度 来自 <http://www.cnblogs.com
Error Curves Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 6241 Accepted Submission(s): 2341 Problem Description Josephina is a clever girl and addicted to Machine Learning recently. Shepay
The Moving Points Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2122 Accepted Submission(s): 884 Problem Description There are N points in total. Every point moves in certain direction and
首先本题的关键是一次性加0操作只有第一个0是有用的.然后对于1 k操作,其实就是把之前的所有数删除.对于其他的情况,维护一次函数的和,将(i,a[i])看成平面上的一个点,用单调栈维护一下. #include<bits/stdc++.h> using namespace std; ; #define int long long typedef pair<int,int>pii; int n,k,b,Q,top; pii st[N]; long double getk(pii a,p
solver : {‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’}, default: ‘liblinear’ Algorithm to use in the optimization problem. For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ is faster for large ones. For multiclass problems, only ‘newton-cg