此程序为优化后的分水岭算法,避免了图像过分割 I= imread('D:\Images\pic_loc\1870405130305041503.jpg'); imshow(I); h=fspecial('sobel'); %h = fspecial(type) creates a two-dimensional filter h of the specified type. fspecial returns h as %a correlation kernel, which is the app
骨架提取与分水岭算法也属于形态学处理范畴,都放在morphology子模块内. 1.骨架提取 骨架提取,也叫二值图像细化.这种算法能将一个连通区域细化成一个像素的宽度,用于特征提取和目标拓扑表示. morphology子模块提供了两个函数用于骨架提取,分别是Skeletonize()函数和medial_axis()函数.我们先来看Skeletonize()函数. 格式为:skimage.morphology.skeletonize(image) 输入和输出都是一幅二值图像. 例1: from s
python skimage图像处理(三) This blog is from: https://www.jianshu.com/p/7693222523c0 霍夫线变换 在图片处理中,霍夫变换主要是用来检测图片中的几何形状,包括直线.圆.椭圆等.在skimage中,霍夫变换是放在tranform模块内,本篇主要讲解霍夫线变换.对于平面中的一条直线,在笛卡尔坐标系中,可用y=mx+b来表示,其中m为斜率,b为截距.但是如果直线是一条垂直线,则m为无穷大,所有通常我们在另一坐标系中表示直线,即极
1 综述 Separating touching objects in an image is one of the more difficult image processing operations. The watershed transform is often applied to this problem. The watershed transform finds "catchment basins"(集水盆) and "watershed ridge line
基于Matlab的标记分水岭分割算法 http://blog.sina.com.cn/s/blog_725866260100rz7x.html 1 综述 Separating touching objects in an image is one of the more difficult image processing operations. The watershed transform is often applied to this problem. The watershed tra
转自:http://blog.sina.com.cn/lyqmath 1 综述 Separating touching objects in an image is one of the more difficult image processing operations. The watershed transform is often applied to this problem. The watershed transform finds "catchment basins"(
C++: void distanceTransform(InputArray src, OutputArray dst, int distanceType, int maskSize) 参数详解: InputArray src:输入的图像,一般为二值图像 OutputArray dst:输出的图像 int distanceType:所用的求解距离的类型. It can be CV_DIST_L1, CV_DIST_L2 , or CV_DIST_C mask_size 距离变换掩模的大小,可以
// watershed_test20140801.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" // // ch9_watershed image // This is an exact copy of the watershed.cpp demo in the OpenCV ../samples/c directory // // Think about using a morphologically eroded forground an
https://blog.csdn.net/u011511601/article/details/72843247 MeanShift图像分割算法:大概是将复杂的背景,通过粗化提取整体信息,进而将图像分割. 接下来我想,将会抽出一部分时间,研究一下这个算法,以最终实现手势形状提取. <Mean Shift: A Robust Approach Toward Feature Space Aalysis>一文中,利用Meanshift算法分割图像,大体类似于这样的效果: 看到一篇非常好哒博文 me