一:Numpy # 数组和列表的效率问题,谁优谁劣 # 1.循环遍历 import numpy as np import time my_arr = np.arange(1000000) my_list = list(range(1000000)) def arr_time(array): s = time.time() for _ in array: _ * 2 e = time.time() return e - s def list_time(list): s = time.time()
一:读取数据的函数 1.读取csv文件 import numpy as np import pandas as pd data = pd.read_csv("C:\\Users\\Administrator\\Desktop\\result.csv",encoding="utf-8") # 这里需要注意路径必须用\\斜杠,\斜杠显示语法错误. data # 结果 数据量共100多万条,中间的省略显示
项目简介 Project Brief <利用Python进行数据分析-第二版>自学过程中整理的知识图谱. Python for Data Analysis: Data Wrangling with Pandas, NumPy and IPython. Knowledge Graph was made in the process of self-study. 源文件emmx格式,源文件已经上传Github 项目指南 GitHub地址(源文件) https://github.com/JYRoy/