------------------------------------- ------------------------------------- -------------------------------------------------------------- 源码贴在下面,欢迎相互交流 import numpy as np from sklearn.preprocessing import PolynomialFeatures x = np.arange(9).reshape(
基于上面的一篇博客k-means利用sklearn实现k-means #!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans # In[4]: # 加载数据 dataset = [] for line in open("data_kmeans.csv"): x, y = line
很多框架都会提供一种Pipeline的机制,通过封装一系列操作的流程,调用时按计划执行即可.比如netty中有ChannelPipeline,TensorFlow的计算图也是如此. 下面简要介绍sklearn中pipeline的使用: from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.impute import SimpleImputer from
基于上面一篇博客k-近邻利用sklearns实现knn #!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsClassifier # In[2]: # 数据准备 dataset = [] for line in open("data_knn.csv"): x, y,