vivo 互联网产品团队 - Wang xiao 随着广告和内容等推荐场景的扩展,算法模型也在不断演进迭代中.业务的不断增长,模型的训练.产出迫切需要进行平台化管理.vivo互联网机器学习平台主要业务场景包括游戏分发.商店.商城.内容分发等.本文将从业务场景.平台功能实现两个方面介绍vivo内部的机器学习平台在建设与实践中的思考和优化思路. 一.写在前面 随着互联网领域的快速发展,数据体量的成倍增长以及算力的持续提升,行业内都在大力研发AI技术,实现业务赋能.算法业务往往专注于模型和调参,而工程
来源:https://blog.csdn.net/bluishglc/article/details/79277455 引言在大数据的生态系统里,时间序列数据(Time Series Data,简称TSD)是很常见也是所占比例最大的一类数据,几乎出现在科学和工程的各个领域,一些常见的时间序列数据有:描述服务器运行状况的Metrics数据.各种IoT系统的终端数据.脑电图.汇率.股价.气象和天文数据等等,时序数据在数据特征和处理方式上有很大的共性,因此也催生了一些面向面向时序数据的特定工具,比如时