在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl).最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域.最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),也就是将隐藏变量象能够观测到的一样包含在内从而计算最大似然的期望值:另外一步是最大化(M),也就是最大化在 E 步上找到的最大
十大经典算法导图 图片名词解释:n: 数据规模k:“桶”的个数In-place: 占用常数内存,不占用额外内存Out-place: 占用额外内存 1.冒泡排序 1.1 原始人冒泡排序 function bubbleSort(arr) { var len = arr.length; for (var i = 0; i < len; i++) { for (var j = 0; j < len - 1 - i; j++) { if (arr[j] > arr[j+1]) { //相邻元素