首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
单片机ad采样交流信号如何计算
2024-11-05
一种用单片机AD采样方式来检测交流市电电压的方法
下面介绍一种用单片机AD采样的方式检测市电电压的方法 要检测交流市电的电压,通常有两种方法 一.通过频繁的采样后再求平均值来获得实际电压值 二.通过采样交流市电的峰值,再通过算法得出实际电压值 这里我们讲述峰值采样法的步骤: 1.在正半波时,频繁采样市电AD值,在每次采样后进行 从小到大排序并保存几个最大值的结果,分别放在R_SaveVolAC[0]..R_SaveVolAC[3] 2.在负半波时,把刚才所采样到的几个值中,提取R_SaveVolAC[1]的值作为 上个正半波的的最大值.(R_
实现 AD 采样,使用 LCD1602 显示 AD 数值
实现 AD 采样,使用 LCD1602 显示 AD 数值 写在前面 单片机内集成的A/D转换,一般都有相应的特殊功能寄存器来设置A/D的使能标志,参考电压,转换频率,通道选择,A/D输入口的属性(模拟量输入还是普通的I/O口),启动,停止控制等.有了这些寄存器,使得我们控制单片机的模拟量采集变得非常方便. A/D转换的基本原理是:将参考电平按最大的转换值量化,再利用输入模拟电平与参考电平的比例来求得输入电平的测量值(V测=V参*(AD量化值/AD转换的最大值)).有些MCU A/D转换的参考电平
stm32之TIM+ADC+DMA采集50HZ交流信号
http://cache.baiducontent.com/c?m=9d78d513d98207f04fece47f0d01d7174a02d1743ca6c76409c3e03984145b563710f4bb56644b5bc7823c390ef50f1aa8e737012a1e65f2dedf883d80f9c57478de6323706bd71c4dce5ff58b11769737902cefaa18ecb9e732e5adc5d3a95744ca245f3cdfae&p=8b2a975
AD采样模块采集带模拟量真空表值的实验
实验采用带模拟量,分辨率为1-5V,量程为0--101kpa的真空表 数据采集模块采用DAM-8021, 16位模块 算法描述如下: 真空表读数范围: 0到-101kpa 模拟量输出: 1-5V 一次AD数据采集结果为(由串口助手取得): >+03.921-00.000 此时真空表读数: 74.2 则系数A=(3.921-1)/74.2=0.0393 真空表模拟量输出修正系数: 是指真空表模拟量输出的偏差. 其取得方法为, 将真空去掉,让真空表读数为零, 读一次AD采样的结果, 例如其
STM32中AD采样的三种方法分析
在进行STM32F中AD采样的学习中,我们知道AD采样的方法有多种,按照逻辑程序处理有三种方式,一种是查询模式,一种是中断处理模式,一种是DMA模式.三种方法按照处理复杂方法DMA模式处理模式效率最高,其次是中断处理模式,最差是查询模式,相信很多学者在学习AD采样程序时,很多例程采用DMA模式,在这里我针对三种程序进行分别分析. 1.AD采样查询模式 在AD采样查询模式中,我们需要注意的是IO口的初始化配置,这里我采用PA2作为模拟采集的引脚(AIN2)和串口3作为打印输出. 具体如下:建立一个
AD采样问题总结
说明:来源http://bbs.csdn.net/topics/390899032论坛讨论 一个100HZ的正弦波,我用300HZ的采样率去采样,那么根据香农定律是不是一秒钟就采集到300个点,因为这个波形是100HZ,所以这一秒钟内就有一百个波形经过,那么300个点平均到每个波形上就只有3个点了,也就是一个波形上采集3个点, 采样率一般是Sps为单位,而不是用Hz, 例如300Sps,即300 Samples Per Second.100Hz的正弦,用300Sps的采样率,则平均每个正弦周期
关于Stm32定时器+ADC+DMA进行AD采样的实现
Stm32的ADC有DMA功能这都毋庸置疑,也是我们用的最多的!然而,如果我们要对一个信号(比如脉搏信号)进行定时采样(也就是隔一段时间,比如说2ms),有三种方法: 1.使用定时器中断每隔一定时间进行ADC转换,这样每次都必须读ADC的数据寄存器,非常浪费时间! 2.把ADC设置成连续转换模式,同时对应的DMA通道开启循环模式,这样ADC就一直在进行数据采集然后通过DMA把数据搬运至内存.但是这样做的话还得加一个定时中断,用来定时读取内存中的数据! 3.使用ADC的定时器触发ADC转换的功能,
AD采样的一个例子
用122.88k时钟采样153.6k的信号
ad采样后幅度的衰减
adc采集到的信号对低频有一定的衰减.因为要确定衰减的程度.通过da输出到示波器上观察. 数据如下: 输入 输出(enable) 输出(disable) 1v(20hz) 1v 0.88v 1v(10hz) 0.76v 0.76v 1v(8hz) 0.6v 0.68v 1v(5hz) 0.4v 0.5v 1v(3hz) 0.25v 0.35v 1v(2hz) 0.15v 0.25v 1v(1hz) 0.05v 0.12v 在8hz以下还是有比较到的衰减.这是使用示波器观察还是经过dac的于是想直
STM32 AD采样电压计算公式
在使用STM32的ADC进行检测电压时必须回涉及到电压值的计算,为了更高效率的获取电压,现在有以下三种方法: 你得到的结果是你当前AD引脚上的电压值相对于3.3V和4096转换成的数字.假如你得到的AD结果是ADC_DR这个变量,他们存在以下关系: ADC_DR/当前电压值 = 4096/3300毫伏如果你反过程想得到当前电压值,可以如下计算:unsigned long Voltage;Voltage = ADC_DR; //---假设你得到的AD结果存放到ADC_DR这个变量中;Voltage
单片机如何产生PWM信号
用89C52产生控制二相步进电机的程序,用PWM信号控制步进电机 用普通I/O口采用软件定时器中断可以模拟PWM输出 /*采用6MHz晶振,在P1.0脚上输出周期为2.5s,占空比为20%的脉冲信号*/ /*定时100ms,周期2.5s需25次中断,高电平0.5s需5次中断*/ #include <reg51.h> typedef unsigned char uchar; sbit P1_0=P1^; uchar time=; uchar period=; uchar high=; { TH0
STC12C5201AD AD采样+串口发送模板
#include<reg52.h> sfr ADC_CONTR = 0xBC; //ADC control register sfr ADC_RES = 0xBD; //ADC 8-bit result register sfr P1ASF = 0x9D; //P1 secondary function control register /* Define ADC operation const for ADC_CONTER */ #define ADC_POWER 0x80 #define
AD采样求平均STM32实现
iADC_read(, &u16NTC_1_Sample_Val_ARR[]); == ui8FirstSampleFlag) { ; i<; i++) { u16NTC_1_Sample_Val_ARR[i] = u16NTC_1_Sample_Val_ARR[]; } ui8FirstSampleFlag = ; } u16NTC_1_Sample_Val_ARR[] = (uint16_t) ((] + u16NTC_1_Sample_Val_ARR[] + u16NTC_1_Samp
AD转换器的主要指标
AD转换器的主要指标如下: (1)分辨率(Resolution).指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值.分辨率又称精度,通常以数字信号的位数来表示.定义满刻度于2^n的比值(n为AD器件位数).对于5V满刻度,采用8位的AD时,分辨率为5V/256=0.01953V=19.53mv:当采用12位的AD时,分辨率则为5V/4096=0.00122V=0.122mv.位数越多,分辨率就越高 (2)转换速率(Conversion Rate).是指完成一次从模拟转换到数字的
在AD转换中的过采样和噪声形成
1. 直接量化的过采样AD转换 此类系统的模型可以用下图表示. 图中xa(t)是输入信号,e(t)是量化引入的噪声,xd[n]是最终得到的数字信号,包含分量xda和xde. 对于M倍过采样,信号与量化噪声的功率谱如下图. 从上图可以看出,M越大,信号与噪声之间的重叠部分就越少. 现在将上面的信号通过一个截止频率为PI/M的理想数字滤波器,信号功率不受影响,而PI/M之外的量化噪声将被滤除.再经过M倍降采样后,信号与量化噪声的功率谱就变成下面的样子(量化噪声只有滤波降采样前的1/M): 计算表明(
利用过采样技术提高ADC测量微弱信号时的分辨率
1. 引言 随着科学技术的发展,人们对宏观和微观世界逐步了解,越来越多领域(物理学.化学.天文学.军事雷达.地震学.生物医学等)的微弱信号需要被检测,例如:弱磁.弱光.微震动.小位移.心电.脑电等[1-3].测控技术发展到现在,微弱信号检测技术已经相对成熟,基本上采用以下两种方法来实现:一种是先将信号放大滤波,再用低或中分辨率的ADC进行采样,转化为数字信号后,再做信号处理,另一种是使用高分辨率ADC,对微弱信号直接采样,再进行数字信号处理.两种方法各有千秋,也都有自己的缺点.前一种方法,ADC
实验5 IIC通讯与AD/接DA接口
1.利用单片机控制PCF8591的AD转换,控制AD0和AD1电位器,在数码光上显示DA转换的值. 2.利用单片机控制PCF8591的DA转换,让发光二极管D1由暗到亮变化,整个过程时间差不多2s左右,再由亮到暗变化,循环变化. 以下代码将1.2实验合并成一个实验. Lab6.1 #include<reg51.h> #include <I2C.H> #define PCF8591 0x90 //PCF8591 地址 #define uchar unsigned char #
数字麦克风PDM信号采集与STM32 I2S接口应用(二)
在使用STM32的数字麦克风I2S接口时,计算采样率让人头疼,芯片手册上没有明确的说法,而手册上的计算方法经过测试确和实验不符.借助搜索引擎,大部分资料都是来自于开发板卖家或开发板论坛,主要是咪头采集然后配置WM89系列解码芯片,然后配合FatFS.MP3解码等模式,主要是讲解I2S录音.存储.放音等.外文资料得到的也寥寥无几,也没有找到讲解STM32数字麦克风配置.计算的文档.加上网上资料转载.抄袭.浅尝辄止的笔记教程,这些更是让检索大海捞针,过程艰辛一言难尽,有些网文三言两语抑或作者都没有搞
AVR单片机教程——示波器
本文隶属于AVR单片机教程系列. 在用DAC做了一个稍大的项目之后,我们来拿ADC开开刀.在本讲中,我们将了解0.96寸OLED屏,移植著名的U8g2库到我们的开发板上,学习在屏幕上画直线的算法,编写一个示波器程序,使用EEPROM加入人性化功能,最后利用示波器观察555定时器.放大电路.波形变换电路的各种波形. OLED屏 我们使用的是0.96寸OLED屏,它由128*64个像素点构成,上16行为蓝色,下48行为黄色,两部分之间有大约两像素的空隙.虽然有两种颜色,但每个像素点都只能发出一种
AD转换器的主要技术指标
1)分辩率(Resolution) 指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值.分辩率又称精度,通常以数字信号的位数来表示. 2) 转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数.积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级.采样时间则是另外一个概念,是指两次转换的间隔.为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率.因
热门专题
win python安装nodejs
JS统计用户输入的10个数中出现0的次数
获取app的所有实际布局
spring 配置数据源时 屏蔽用户名和密码
linux 查看.a文件 是否存在函数
C# 根据字符串 调用不同的方法
android制作3d相册
导出用get还是post
windows使用Java Minio
python shuti指令
元素的offsetTop值不固定怎么办
NTP时间同步 AMBARI
android apk自动安装更新包,提示软件解析错误
thinkPHP 5.3更改后台地址
ssh IdentityFile存放位置
启动虚机 paused
vue2中选中样式怎么写
openvpn 环境搭建及使用
iperf windows使用方法
mysql8小时断开连接