What does the gradient flowing through batch normalization looks like ? 反向传播梯度下降权值参数更新公式的推导全依赖于复合函数求梯度时的链式法则. 1. Batch Normalization 给定输入样本 x∈RN×D,经过一个神经元个数为 H 的隐层,负责连接输入层和隐层的权值矩阵 w∈RD×H,以及偏置向量 b∈RH. Batch Normalization 的过程如下: 仿射变换(affine transformat
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/234 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learning)>的全套学习笔记,对应的课程视频可以在 这里 查看