#include <bits/stdc++.h> , MO = ; ; inline int qpow(int a, int b) { ; while(b) { ) { ans = 1ll * ans * a % MO; } a = 1ll * a * a % MO; b = b >> ; } return ans; } inline void Gauss() { ; i < n; i++) { ; j <= n; j++) { if(a[j][i]) { std::s
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N integers a 1, a 2, -, a N, and M, K. She says each integers 1 ≤ a i ≤ M. And now Alice wants to ask for each d = 1 to M, how many different sequences b
题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 m 减去 Ai - 1 ,相当于将这一部分固定分给 xi,就转化为无限制的情况了. 如果有一些限制条件是 xi <= Ai 呢?直接来求就不行了,但是注意到这样的限制不超过 8 个,我们可以使用容斥原理来求. 考虑容斥:考虑哪些限制条件被违反了,也就是说,有哪些限制为 xi <= Ai 却是 xi
题意:给定 n 个物品,然后有 m 个人买东西,他们有 x 元钱,然后从 l - r 这个区间内买东西,对于每个物品都尽可能多的买,问你最少剩下多少钱. 析:对于物品,尽可能多的买的意思就是对这个物品价格取模,但是对于价格比我的钱还多,那么就没有意义,对取模比我的钱少的,那取模至少减少一半,所以最多只要60多次就可以结束,为了快速找到第一个比我的钱少的,使用线段树. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000"
题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020 输出组合数C(n, m) mod p (1 <= m <= n <= 10^9, m <= 10^4, m < p < 10^9, p是素数) 由于p较大,不可以打表,直接Lucas求解 #include<iostream> using namespace std; typedef long long
(转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求一个幂式的模(余).在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快.计算范围更大的算法,产生了快速幂取模算法.我们先从简单的例子入手:求abmodc 算法1.直接设计这个算法: ; ;i<=b;i++) { ans = ans