背景知识: (1)tf-idf 按照词TF-IDF值来衡量该词在该文档中的重要性的指导思想:如果某个词比较少见,但是它在这篇文章中多次出现,那么它很可能就反映了这篇文章的特性,正是我们所需要的关键词. tf–idf is the product of two statistics, term frequency and inverse document frequency. //Various ways for determining the exact values of both
1. 词向量上的操作(Operations on word vectors) 因为词嵌入的训练是非常耗资源的,所以ML从业者通常 都是 选择加载训练好 的 词嵌入(Embedding)数据集.(不用自己训练啦~~~) 任务: 导入 预训练词向量,使用余弦相似性(cosine similarity)计算相似度 使用词嵌入来解决 "Man is to Woman as King is to __." 之类的 词语类比问题 修改词嵌入 来减少它们的性别歧视 import numpy as n
在<机器学习---文本特征提取之词袋模型(Machine Learning Text Feature Extraction Bag of Words)>一文中,我们通过计算文本特征向量之间的欧氏距离,了解到各个文本之间的相似程度.当然,还有其他很多相似度度量方式,比如说余弦相似度. 在<皮尔逊相关系数与余弦相似度(Pearson Correlation Coefficient & Cosine Similarity)>一文中简要地介绍了余弦相似度.因此这里,我们比较一下欧氏
5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.3词嵌入的特性 properties of word embedding Mikolov T, Yih W T, Zweig G. Linguistic regularities in continuous space word representations[J]. In HLT-NAACL, 2013. 词嵌入可以用来解决类比推理问题(reasonable analogies) man 如果对应woman,此时左
概述: 余弦相似度 是对两个向量相似度的描述,表现为两个向量的夹角的余弦值.当方向相同时(调度为0),余弦值为1,标识强相关:当相互垂直时(在线性代数里,两个维度垂直意味着他们相互独立),余弦值为0,标识他们无关. Cosine similarity is a measure of similarity between two vectors of an inner product space that measures the cosine of the angle between them.