参考: 1. Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context https://arxiv.org/pdf/1901.02860.pdf 2. Self-Attention with Relative Position Representations (shaw et al.2018): https://arxiv.org/pdf/1803.02155.pdf 3. [NLP] 相对位置编码(一) Re
对于Transformer模型的positional encoding,最初在Attention is all you need的文章中提出的是进行绝对位置编码,之后Shaw在2018年的文章中提出了相对位置编码,就是本篇blog所介绍的算法RPR:2019年的Transformer-XL针对其segment的特定,引入了全局偏置信息,改进了相对位置编码的算法,将在相对位置编码(二)的blog中介绍. 本文参考链接: 1. 翻译:https://medium.com/@_init_/how-se
前不久,DeepMind 提出生成查询网络 GQN,具备从 2D 画面到 3D 空间的转换能力.近日.DeepMind 基于 GQN 提出一种新模型.可以捕捉空间关系的语义(如 behind.left of 等),当中包括一个基于从场景文本描写叙述来生成场景图像的新型多模态目标函数.结果表明,内部表征对意义不变的描写叙述变换(释义不变)具备稳健性,而视角不变性是该系统的新兴属性. 论文:Encoding Spatial Relations from Natural Language 论文链接:h
目录 简介 经典模型概述 Model 1: Attentive Reader and Impatient Reader Model 2: Attentive Sum Reader Model 3: Stanford Attentive Reader Model 4: AOA Reader Model 5: Match-LSTM and Answering Point Match-LSTM Pointer Net Match-LSTM and Answering Point Model 5: Bi
目录 简介 经典模型概述 Model 1: Attentive Reader and Impatient Reader Attentive Reader Impatient Reader Model 2: Attentive Sum Reader Model 3: Stanford Attentive Reader Model 4: AOA Reader Model 5: Match-LSTM and Answering Point Match-LSTM Pointer Net Match-LS
[OpenGL ES 03]3D变换:模型,视图,投影与Viewport 罗朝辉 (http://blog.csdn.net/kesalin) 本文遵循“署名-非商业用途-保持一致”创作公用协议 系列文章: [OpenGL ES 01]OpenGL ES之初体验 [OpenGL ES 02]OpenGL ES渲染管线与着色器 前言 本来打算直接写教程 04 的,但是想到3D 变换涉及的数学知识较多,往往是很多初学者的拦路虎(比如我自己).再加上OpenGL ES 2.0 不再提供OpenGL E