首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
四边形不等式 单调队列
2024-10-20
CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性
LINK:CF321E Ciel and Gondolas 很少遇到这么有意思的题目了.虽然很套路.. 容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i,j)\) 暴力显然不太行 不过暴力枚举决策的话 可以预处理前缀和线性推出. 显然想要优化决策的话第一步就需要O(1)求出\(cost(i,j)\) 经过画图 可以发现预处理出\(g[i][j]\)表示从\((1,1)\)到\((i,j)\)这个矩形中的点值和 和 \(sum_i\)表示\((1,1
P1912-[NOI2009]诗人小G【四边形不等式,单调队列】
正题 题目链接:https://www.luogu.com.cn/problem/P1912 题目大意 给出\(n\)个字符串,把这些字符串依次用空格(算一个长度)连接分成若干段,若一段长度为\(x\),那么代价是\(|x-L|^P\) 求代价和最小的方案,如果代价大于\(1e18\)则输出其他东西 \(1\leq n\leq 10^5,1\leq L\leq 3\times 10^6,1\leq P\leq 10\) 解题思路 \(s_i\)表示前\(i\)个字符串的长度和加\(i\),那么有
BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】
题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\forall a \le b \le c \le d\)有 \[val(a,d) + val(b,c) \ge val(a,c) + val(b,d)\] 那么我们称函数\(val(i,j)\)满足四边形不等式 一般地,当我们需要证明一个函数\(val(i,j)\)满足四边形不等式时,只需证对于\(\fo
【整理】石子合并问题(四边形不等式DP优化)
有很多种算法: 1,任意两堆可以合并:贪心+单调队列. 2,相邻两堆可合并:区间DP (O(n^3)) ). 3,相邻,四边形不等式优化DP (O(n^2) ). 4,相邻,GarsiaWachs算法 (O(nlgn)). 这里实现了第2,3种解法:(个人的区间DP习惯从后面向前面扫) 看起来第四种还是比较重要的,有空再搞. 2:暴力DP #include<cstdio> #include<cstdlib> #include<cstring> #includ
【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重循环跑状态 i,一重循环跑 i 的所有子状态)这样的时间复杂度是O(N^2)而 斜率优化或者四边形不等式优化后的DP 可以将时间复杂度缩减到O(N) O(N^2)可以优化到O(N) ,O(N^3)可以优化到O(N^2),依次类推 斜率优化DP和四边形不等式优化DP主要的原理就是利用斜率或者四边形不等
『一维线性dp的四边形不等式优化』
四边形不等式 定义:设\(w(x,y)\)是定义在整数集合上的的二元函数,若对于定义域上的任意整数\(a,b,c,d\),在满足\(a\leq b\leq c \leq d\)时,都有\(w(a,d)+w(b,c)\geq w(a,c)+w(b,d)\)成立,则称函数\(w\)满足四边形不等式. 定理1:四边形不等式的等价表达 \(w(x,y)\)是定义在整数集合上的的二元函数,若对于定义域上的任意整数\(a,b\),在满足\(a< b\)时,都有\(w(a,b+1)+w(a+1,b)\geq
dp优化---四边形不等式与决策单调性
四边形不等式 定理1: 设w(x,y)为定义在整数集合上的二元函数,若存在任意整数a,b,c,d(a<=b<=c<=d),并且w(a,d)+w(b,c)>=w(a,c)+w(b,d)都成立,则w(x,y)满足四边形不等式. 定理2: 设w(x,y)为定义在整数集合上的二元函数,若存在任意整数a,b(a<b),并且w(a,b+1)+w(a+1,b)>=w(a,b)+w(a+1,b+1)都成立,则w(x,y)也满足四边形不等式. 用数学归纳法证明即可. 决策单调性 假设转移
【刷题笔记】DP优化-单调队列优化
单调队列优化 眼界极窄的ZZ之前甚至不会单调队列--(好丢人啊) 单调队列优化的常见情景: 转移可以转化成只需要确定一个维度,而且这个维度的取值范围在某个区间里 修剪草坪 这个题学长讲的好像是另外一个思路,但是码的时候不知不觉就偏到另一个思路里去了--改天也打打试试 需要注意的: 这题中如果有多个满足最大值,我们应该取最靠前的,所以在弹队的时候用的是> 这个题中单调队列维护的是\(dp_{j,0}-pre_j(i-k-1\leq j \leq i)\),这里的\(j\)是入队时的下标 精华: f
四边形不等式优化 dp (doing)
目录 1. 四边形不等式与决策单调性 2. 决策单调性优化 dp - (i) 关于符号 1. 四边形不等式与决策单调性 定义(四边形不等式) 设 \(w(x,y)\) 是定义在整数集合上的二元函数,若对于任意 \(a\le b\le c\le d\),都有 \[w(a,d)+w(b,c)\ge w(a,c)+w(b,d) \] 则称 \(w\) 满足 四边形不等式 . 定义(区间包含单调性) 设 \(w(x,y)\) 是定义在整数集合上的二元函数,若对于任意 \(a\le b\le c\le d
单调队列 && 斜率优化dp 专题
首先得讲一下单调队列,顾名思义,单调队列就是队列中的每个元素具有单调性,如果是单调递增队列,那么每个元素都是单调递增的,反正,亦然. 那么如何对单调队列进行操作呢? 是这样的:对于单调队列而言,队首和队尾都可以进行出队操作,但只有队尾能够进行入队操作. 至于如何来维护单调队列,这里以单调递增队列为例: 1.如果队列的长度是一定的,首先判断队首元素是否在规定范围内,如果不再,则队首指针向后移动.(至于如何来判断是否在制定范围内,一般而言,我们可以给每个元素设定一个入队的序号,这样就能够知道每个元素
[学习笔记]四边形不等式优化DP
形如$f[i][j]=min{f[i][k]+f[k+1][j]}+w[i][j]$的方程中, $w[\;][\;]$如果同时满足: ①四边形不等式:$w[a][c]+w[b][d]\;\leq\;w[a][d]+w[b][c](a\;\leq\;b<c\;\leq\;d)$ ②区间包含关系单调:$w[i+1][j]\;\leq\;w[i][j]\;\leq\;w[i][j+1]$ 则$f[\;][\;]$也满足四边形不等式. 记使$f[i][j]$最小的$k$为$g[i][j]$,则$g[i]
hdu 3506 Monkey Party 区间dp + 四边形不等式优化
http://acm.hdu.edu.cn/showproblem.php?pid=3506 四边行不等式:http://baike.baidu.com/link?url=lHOFq_58V-Qpz_nTDz7pP9xCeHnd062vNwVT830z4_aQoZxsCcRtac6CLzbPYLNImi5QAjF2k9ydjqdFf7wlh29GJffeyG8rUh-Y1c3xWRi0AKFNKSrtj3ZY7mtdp9n5W7M6BBjoINA-DdplWWEPSK#1 dp[i][j]表示第
BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<
石子合并(四边形不等式优化dp) POJ1160
该来的总是要来的———————— 经典问题,石子合并. 对于 f[i][j]= min{f[i][k]+f[k+1][j]+w[i][j]} From 黑书 凸四边形不等式:w[a][c]+w[b][d]<=w[b][c]+w[a][d](a<b<c<d) 区间包含关系单调: w[b][c]<=w[a][d](a<b<c<d) 定理1: 如果w同时满足四边形不等式和决策单调性 ,则f也满足四边形不等式 定理2: 若f满足四边形不等式,则决策s满足 s[i
BZOJ_1010_[HNOI2008]_玩具装箱toy_(斜率优化动态规划+单调队列)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 给出\(n\)和\(l\).有\(n\)个玩具,第\(i\)个玩具的长度是\(c[i]\),要求将玩具分成若干段,从\(i\)到\(j\)分为一段的长度为\(x=j-i+\sum_{k=i}^jc[k]\),费用为\((x-l)^2\).求最小费用. 分析 用\(dp[i]\)表示前\(i\)个玩具所需的最小费用,则有$$dp[i]=min\{dp[j]+(sum[i]-sum[j]+
四边形不等式优化DP
记录一下,以免忘了 对于一个形如 \[dp[i][j]=min(dp[i][k]+dp[k][j]+w[i][j])\] 的转移方程(注意取最大值时不一定满足四边形不等式) 定理1 若对于\(a \leq b\leq c \leq d\)且\(w_{b,c}\leq w_{a,d}\) 那么我们称\(w\)关于区间包含关系单调 定理2 若对于\(a \leq b\leq c \leq d\)且\(w_{a,c}+w_{b,d}\leq w_{b,c}+w_{a,d}\) 则称\(w\)满足四边形
区间DP石子合并问题 & 四边形不等式优化
入门区间DP,第一个问题就是线性的规模小的石子合并问题 dp数组的含义是第i堆到第j堆进行合并的最优值 就是说dp[i][j]可以由dp[i][k]和dp[k+1][j]转移过来 状态转移方程 dp[i][j] = min(dp[i][j],dp[i][k] + dp[k+1][j] + sum[i][j]) 对于第i堆到第j堆合并的花费 他的子问题是第i个的合并顺序 op1:k实际上控制的是第i堆也就是起始堆的合并顺序 因为必须是相邻合并dp[i][i] 先合并dp[i+1][j]最后再来合并
邮局加强版:四边形不等式优化DP
题目描述 一些村庄建在一条笔直的高速公路边上,我们用一条坐标轴来描述这条公路,每个村庄的坐标都是整数,没有两个村庄的坐标相同.两个村庄的距离定义为坐标之差的绝对值.我们需要在某些村庄建立邮局.使每个村庄使用与它距离最近的邮局,建立邮局的原则是:所有村庄到各自使用的邮局的距离总和最小.数据规模:1<=村庄数<=1600, 1<=邮局数<=200, 1<=村庄坐标<=maxlongint 输入 行第一行:n m {表示有n个村庄,建立m个邮局} 第二行:a1 a2 a3 .
HDU-2829 Lawrence (DP+四边形不等式优化)
题目大意:有n个敌方军火库呈直线排列,每个军火库有一个值vi,并且任意相邻的两个库之间都有通道相连.对于任意一条连起来的军火库链,它对我方的威胁可以用函数w(i,j)表示为:w(i,j)=vi*sum(i+1,j)+w(i+1,j) i<j; w(i,j)=0 i=j; 现在,你有m个炸弹,每颗可以炸掉相邻的两个库之间的通道,求最终的总的最小威胁值. 题目分析:定义状态dp(i,j)表示用 i 颗炸弹使前 j 个库房脱离链条后前 j 个库房产生的最小威胁值,则状态
POJ-1160 Post Office (DP+四边形不等式优化)
题目大意:有v个村庄成直线排列,要建设p个邮局,为了使每一个村庄到离它最近的邮局的距离之和最小,应该怎样分配邮局的建设,输出最小距离和. 题目分析:定义状态dp(i,j)表示建设 i 个邮局最远覆盖到第 j 个村庄时最小距离和.容易得到dp(i,j)=min(dp(i-1,k-1)+w(k,j)),其中w(k,j)表示在k~j之间建设一个邮局的最小距离,所以很显然w(i,j)关于包含关系单调,可以看出w(i,j)还满足凸四边形不等式,所以dp(i,j)也满足凸四边形不等式.那么就有K(i,j-1
热门专题
Dialog 隐藏键盘
一个td中显示两种颜色
reduce的数目不可以是0
uwsg和wsgi启动项目的区别
mysql事务处理实例
plsql拷贝为insert语句
sqlserver 删除表数据不释放空间
three.js 跟随弹出框
python3多线程怎么控制并发数 -csdn
gn文件 设置macosx-version-min
https请求中哪些需要带body
objcopy 静态库
uni-app h5前端项目nginx部署
虚拟机连接wifi失败
阿里云搭建v2ray
多字节字符集和unicode字符集
eclipse JPA DIAGRAM EDITOR安装失败
ubuntu打开程序后台运行
接入微信公众号提示token验证失败
I IC接口上拉电阻值大小影响