大家好,我是小鸭酱,博客地址为:http://www.cnblogs.com/xiaoyajiang model : sets : H/h1..h2/:x , y , e ; L/l1..l6/: a , b , d ; links(H,L) : s ; endsets data : a = 1.25 8.75 0.5 5.75 3 7.25 ; b = 1.25 0.75 4.75 5 6.5 7.75 ; d = 3 5 4 7 6 11 ; x = 5 2 ; y = 1 7 ; e =
本篇文章解决的问题来源于算法设计与分析课程的课堂作业,主要是运用多种方法来计算斐波那契数.具体问题及解法如下: 一.问题1: 问题描述:利用迭代算法寻找不超过编程环境能够支持的最大整数的斐波那契数是第几个斐波那契数.(Java: 231-1 for int, 263-1 for long) 解决方案:针对问题1,此处要使用迭代法来解决,具体实现代码如下: //用迭代法寻找编程环境支持的最大整数(int型)的斐波那契数是第几个斐波那契数 public static int max_int_iter
螺旋矩阵 II 题目描述:给你一个正整数 n ,生成一个包含 1 到 \(n^{2}\) 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix . 示例说明请见LeetCode官网. 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/spiral-matrix-ii/ 著作权归领扣网络所有.商业转载请联系官方授权,非商业转载请注明出处. 解法一:数组遍历 首先,result为要生成的正方形矩阵即二维数组,对应声明一个同
H. Special Palindrome time limit per test:1 second memory limit per test:64 megabytes input:standard input output:standard output A sequence of positive and non-zero integers called palindromic if it can be read the same forward and backward, for exa
最近数值计算学了Guass列主消元法和三角分解法解线性方程组,具体原理如下: 1.Guass列选主元消去法对于AX =B 1).消元过程:将(A|B)进行变换为,其中是上三角矩阵.即: k从1到n-1 a. 列选主元 选取第k列中绝对值最大元素作为主元. b. 换行 c. 归一化 d. 消元 2).回代过程:由解出. 2.三角分解法(Doolittle分解) 将A分解为如下形式 由矩阵乘法原理 a.计算U的第一行,再计算L的第一列 b.设已求出U的1至r-1行,L的1至r-1列.先计算U的第r行
Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth smallest element in the matrix. Note that it is the kth smallest element in the sorted order, not the kth distinct element. Example: matrix = [ [ 1, 5
Given an integer matrix, find the length of the longest increasing path. From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed). E
An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black pixels are connected, i.e., there is only one black region. Pixels are connected horizontally and vertically. Given the location (x, y) of one of the