接下来我们就对除了正态分布以外的常用参数分布族进行参数估计,具体对连续型分布有指数分布.均匀分布,对离散型分布有二项分布.泊松分布几何分布. 今天的主要内容是均匀分布的参数估计,内容比较简单,读者应尝试一边阅读,一边独立推导出本文的结论.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Part 1:均匀分布的参数估计 Part 2:次序统计量 Part 3:均匀分布次序统计量与$\beta$分布 Part 1:均匀分布的参数估计 一般说来,离散分布似乎比连续
注:上一小节总结了离散型随机变量,这个小节总结连续型随机变量.离散型随机变量的可能取值只有有限多个或是无限可数的(可以与自然数一一对应),连续型随机变量的可能取值则是一段连续的区域或是整个实数轴,是不可数的.最常见的一维连续型随机变量有三种:均匀分布,指数分布和正态分布.下面还是主要从概述.定义.主要用途和Python的实现几个方面逐一描述. 以下所有Python代码示例,均默认已经导入上面的这几个包,导入代码如下: import numpy as np from scipy import st
统计工作中几个常用用法在python统计函数库scipy.stats的使用范例. 正态分布以正态分布的常见需求为例了解scipy.stats的基本使用方法. 1.生成服从指定分布的随机数 norm.rvs通过loc和scale参数可以指定随机变量的偏移和缩放参数,这里对应的是正态分布的期望和标准差.size得到随机数数组的形状参数.(也可以使用np.random.normal(loc=0.0, scale=1.0, size=None)) In [4]: import numpy as np I
maximum estimator method more known as MLE of a uniform distribution [0,θ] 区间上的均匀分布为例,独立同分布地采样样本 x1,x2,-,xn,我们知均匀分布的期望为:θ2. 首先我们来看,如何通过最大似然估计的形式估计均匀分布的期望.均匀分布的概率密度函数为:f(x|θ)=1θ,0≤x≤θ.不失一般性地,将 x1,x2,-,xn 排序为顺序统计量:x(1)≤x(2)≤⋯≤x(n).则根据似然函数定义,在此样本集合上的似然函
图形学理论知识 BRDF 双向反射分布函数 Bidirectional Reflectance Distribution Function BRDF理论 BRDF表示的是双向反射分布函数(Bidirectional Reflectance Distribution Function),它描述了光线如何在物体表面进行反射,可以用来描述材质属性. BRDF的输入参数是入射光的的仰角.方位角.出射光的仰角.方位角,还与入射光的波长相关. BRDF的输出结果是一个数值,表示在给定的入射条件下,出射方向上
布朗语料库中使用条件概率分布函数ConditionalFreqDist,可以查看每个单词在各新闻语料中出现的次数.这在微博情感分析中非常有用,比如判断feature vector中代表positive or negative or neutral的各feature在每条tweet中出现的次数高低来判断该tweet的情感极性. from nltk.corpus import brown cfd=nltk.ConditionalFreqDist((genre,word)for genre in br
大家都知道Math.random是 javascript 中返回伪随机数的函数,但查看 MDN, The Math.random() function returns a floating-point, pseudo-random number in the range [0, 1) that is, from 0 (inclusive) up to but not including 1 (exclusive) 再看 ECMAScript 5.1 (ECMA-262) 标准,描述如下: R