# Multi-class (Nonlinear) SVM Example # # This function wll illustrate how to # implement the gaussian kernel with # multiple classes on the iris dataset. # # Gaussian Kernel: # K(x1, x2) = exp(-gamma * abs(x1 - x2)^2) # # X : (Sepal Length, Petal Wi
iris二分类 # Linear Support Vector Machine: Soft Margin # ---------------------------------- # # This function shows how to use TensorFlow to # create a soft margin SVM # # We will use the iris data, specifically: # x1 = Sepal Length # x2 = Petal Width
Lasso 是一个线性模型,它给出的模型具有稀疏的系数(sparse coefficients).它在一些场景中是很有用的,因为它倾向于使用较少参数的情况,能够有效减少给定解决方案所依赖变量的个数.因此,Lasso 及其变体是压缩感知(compressed sensing)领域的基础.在某些特定条件下,它能够恢复非零权重的精确解. 在数学公式表达上,它由一个带有l1先验的正则项的线性模型组成.其最小化的目标函数是: min w 1 2 n s a m p l e s | | X w − y |