CVPR 2020几篇论文内容点评:目标检测跟踪,人脸表情识别,姿态估计,实例分割等 CVPR 2020中选论文放榜后,最新开源项目合集也来了. 本届CPVR共接收6656篇论文,中选1470篇,"中标率"只有22%,堪称十年来最难的一届. 目标检测 论文题目: Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection 本文首先指出了基于锚
Rich feature hierarchies for accurate object detection and semantic segmentation 作者: Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik 引用: Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation
Scalable Object Detection using Deep Neural Networks 作者: Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir Anguelov 引用: Erhan, Dumitru, et al. "Scalable object detection using deep neural networks." Proceedings of the IEEE Confere
域适应已经是一个很火的方向了,目标检测更不用说,二者结合的工作也开始出现了,这里我总结了CVPR18和CVPR19的相关论文,希望对这个交叉方向的近况有一个了解. 1. 2018_CVPR Domain Adaptive Faster R-CNN for Object Detection in the Wild 这篇可算是第一个工作,以faster rcnn为baseline,在其基础上添加判别器分支,附着到backbone输出的特征图和roi提取到的向量上,前者代表图像级别的域适应,后者代表物
CVPR2019目标检测论文看点:并域上的广义交 Generalized Intersection over Union Generalized Intersection over Union: A Metric and A Loss for BoundingBox Regression 并域上的广义交Intersection over Union(IOU)是目标检测标准最流行的评估手段.可是,使用boundingbox回归参数方法计算距离误差和最大化度量值优化之间有一个缺陷gap.度量优化目标
计算机视觉中的目标检测,因其在真实世界的大量应用需求,比如自动驾驶.视频监控.机器人视觉等,而被研究学者广泛关注. 上周四,arXiv新出一篇目标检测文献<Object Detection in 20 Years: A Survey>,其对该领域20年来出现的技术进行了综述,这是一篇投向PAMI的论文,作者们review了400+篇论文,总结了目标检测发展的里程碑算法和state-of-the-art,并且难能可贵的对算法流程各个技术模块的演进也进行了说明,还深入到目标检测的特定领域,如人
3D目标检测(CVPR2020:Lidar) LiDAR-Based Online 3D Video Object Detection With Graph-Based Message Passing and Spatiotemporal Transformer Attention 论文地址: http://openaccess.thecvf.com/content_CVPR_2020/html/Yin_LiDAR-Based_Online_3D_Video_Object_Detection_W
前言 最近在学习人脸的目标检测任务时,用了Haar人脸检测算法,这个算法实现起来太简洁了,读入个.xml,调用函数就能用.但是深入了解我发现这个算法原理很复杂,也很优秀.究其根源,于是我找了好些篇相关论文,主要读了2001年Paul Viola和Michael Jones在CVPR上发表的一篇可以说是震惊了计算机视觉的文章,<Rapid Objection Dection using a Boosted Cascade of Simple Features>.这个算法最大的特点就是快!在当时